
The MDriven Book

Table of Contents

Page 1

The MDriven Book

What is MDriven

Page 2

The MDriven Book
Introduction

Write the content here to display this box The printed book can be purchased

on Amazon:

https://www.amazon.com/MDriven-effective-business-control-information/dp/

1729341098 As I have worked as a software developer and architect in

Sweden for the last 20 years, I have seen a lot. I am not going to bore you

with my historic reflections at all. That was my first attempt at an

introduction to this book. Then, I realized that most of the things we have

done with MDriven are very much anchored in the historic reflections of

things we have experienced previously. So I guess what I need to say is more

like this: Having worked many years as a software architect, I have seen a lot

of things that change – but also very much that stays the same over time – a

stable core.What is the stable core? The need to store and retrieve the

information we are dealing with. The need to somehow display it for users

and handle the users' need to update it according to the rules we want to

enforce. This is the technology of any application or system and is what every

system developer needs to deliver – using modern technology at the time of

implementation. I will refer to this as system modernity. Furthermore, we

need to understand the business information in the system and how the rules

that govern the information’s evolution and consistency protection work. This

part I will refer to as the system gist. On the other hand, we all know that to

make our software sell – to an external market or in-house users - it must be

perceived as modern and cool - but in the software business, modern and cool

change every year or so, at least on the surface. Thus, mixing the system gist

down into a currently modern format that will be obsolete in a couple of years

Page 3

The MDriven Book
seems to be something one should avoid. It would be better if the system gist

could somehow be separated from the current modern implementation

strategy – which we know will be less modern as time goes by. This book

contains my suggestions for how we deal with system gist and system

modernity. The MDriven Book - Next Chapter: Praise to UML

Page 4

The MDriven Book
Praise to UML

Write the content here to display this box UML from Wikipedia: “The Unified

Modeling Language (UML) is a general-purpose modeling language in the field

of software engineering, which is designed to provide a standard way to

visualize the design of a system. It was created and developed by Grady

Booch, Ivar Jacobson and James Rumbaugh at Rational Software during

1994–95, with further development led by them through 1996.”To fully

convey my appreciation for UML, I must explain how I look at the world.

Below, I define three areas that will help explain my reasoning: # Fashion:

what goes together with what in a manner that is hot and sexy that people

somehow crave without further need to understand it. # Modernity: ways to

solve known problems. Tools and strategies have a modernity aspect. A more

modern tool is not necessarily better – but it often is considered as such since

the new tool has had the advantage of being created in a world that has more

knowledge than the world that created the old tool. # System gist: anything

that combines a series of ideas and actions in order to produce value. The

gist of the system, in this context, is the system description stripped from

everything that is either fashion or modernity as described above. Let me

exemplify these definitions First example: A car manufacturer is very much

reliant on fashion. How the lines of the car body appeal to the target

audience is very important but almost totally based on feelings and soft

aspects that are hard to measure. The modernity aspect of car manufacturing

is important for the manufacturing process: what tools to use, how to apply

industrial robots, and what third-party systems to include like anti-lock

braking and airbags, etc. The system gist is captured in the design phase of

Page 5

The MDriven Book
the car construction process. It involves all the inherited knowledge about

what is important for cars in general and also some new things that are

important for this car model in particular. Second example: A surgeon.

Modernity provides important tools to diagnose a patient, like MRI. It also

provides even better tools for fixing what is wrong, like minimally invasive

surgery. The system gist for the surgeon is the knowledge of what and where

to cut and how and why organs act as they do. It is important for a surgeon to

be able to draw the intuitive line between gist and modernity. Having the

latest tools will not be enough if you are not educated on what to look for and

how to act upon what you find. As a patient, you will want a surgeon that

masters both the gist and modernity and does not neglect one for the benefit

of the other. When it comes to fashion, it is important for plastic surgeons

because they too must have the main focus on gist and modernity or the

patient will end up with a defective system. I know little about the field of

surgery but I am sure that if I knew more, I would also see aspects of fashion

in appendix removal procedures. It might be how high to cut and how to

stitch the wound that has no immediate support in current science but feels

right or looks good. Where is the software industry in this spectrum? The

software industry differs from the two examples given by not having ONE

fixed or slow-evolving system gist. The software industry is actually about

producing new systems and as such, new areas that have a gist, modernity,

and fashion of their own. The software industry is one Meta level up

compared to surgery or car manufacturing. It is in this way not just a human

activity like surgery but an activity of activities. This is what makes software

development a field that will leave no other area of human activity

untouched. Hundreds of new unique software systems are finalized every day

Page 6

The MDriven Book
and they will resemble each other when it comes to modernity and fashion.

What makes each of them unique is mostly their system gist. Look at what all

the apps on mobile devices share: their execution environment, their use of

the network, the interaction patterns, and widgets. Modernity and fashion is

a time marker that makes it easy to guess the time of construction for a

particular software system. The modernity aspect of software development is

very important to be able to produce a well-behaving system. The fashion

aspect of system development is very important to attract users and make

the system intuitive to use. These two areas, reused over and over, also

evolve at a rather high pace. Refined strategies – or as I call them – modernity

aspects - on how to build software systems is a topic discussed endlessly in

the developer community. It is easy for software developers to completely

get lost in the modernity aspects. As they do, they will leave less room in

their minds for system gist. When we get software developers that move

cross-field and mostly work with modernity and fashion, is anyone taking care

of the gist? What sets one software system apart from another is mainly its

gist, not its modernity. UML is all about system gist. This is why we need UML

or something that solves the same problems. We use UML to describe system

gist in an easy, clear, and partly visual format without any possibility for

alternate interpretations. UML is the most prominent way to handle system

gist. For a software engineer, it is important to be able to quickly place

arguments on design decisions in the correct category. * If it is about system

gist then there will be facts to research in the domain of the system in order

to make the best decisions. Is it about modernity – then it is important to

analyze best practices from the development communities and consider the

pace and gain of change to see which path to take. * Is it about fashion –

Page 7

The MDriven Book
stand back and let the end users or market decide. Take a vote if they do not

reach a consensus. Just as software frameworks – like Entity Framework,

Hibernate, or the like – aim to help developers with modernity issues, there

are manufacturers of generic software systems that aim to solve everything.

These are meta-systems where you can somehow describe your system gist

and then you would be done. Since a meta-system like this is a holy grail – the

search for it engages many software companies. Of course, many claims are

made that the grail is found, but is it really? And is there really such a thing

as the holy grail in the first place? SharePoint SharePoint is a tool that I have

seen used like this on a number of occasions. As SharePoint may have an

appealing modernity and may be fashionable in certain populations it is an

easy sell if it also lends itself to handle ANY system gist. As SharePoint is a

software system it has a system gist of its own. One that may be described

with UML. {{image:Gist_of_SharePoint.png|frameless|358x358px}} As you

see the gist of SharePoint is tiny. In fact the gist of a Meta systems often are

tiny. Alan Turing thought us in 1936 that one can build universal machines – a

machine that can simulate all other machines. Universality of machines is

reached very fast as Stephen Wolfram showed us in his book “A new kind of

science (NKS)”-2002 where he suggest that a cellular automate of only two

state and three colors is universal. Alex Smith later proved this in 2007. In

light of this it is not surprising that the system gist of SharePoint is Universal

– so it can be used to implement any and all systems conceivable. This may

seem fantastic – but just because something is possible does not necessarily

make it a good idea. It may for example be possible to build anything by

gluing grains of sands together under a microscope – but not practical or

economical defensible. Folding down the system gist into ListDefinitions in

Page 8

The MDriven Book
SharePoint is not the best way to treat the gist. In that format it is not easily

evolved and maintained. It is however possible, I do not question that. My

opinion is that the best way currently available to describe system gist is UML

using the language of the domain. Refrain from building Meta systems.

Accept that each area of human activity has its own gist that deserves its

own UML description. When each area has its own gist clearly described in

UML it is easy to maintain and evolve. Free from modernity and fashion

issues. I wish all developers would be aware of the three different areas of

gist, modernity and fashion. It is my belief that we limit our ability to develop

everything due to lack of focus and lack of discussion on system gist. Having

a language for the gist opens up for discussions and thinking that helps

development in all areas of human activity. The MDriven Book - Next Chapter:

What if UML was forbidden See also: UML School

Page 9

The MDriven Book
What if UML was forbidden?

Write the content here to display this box If UML or other structured ways to

define system gist were forbidden – what would happen then? Maybe UML

need not be forbidden – the effect would be the same if UML simply were not

used. Well, the system gist still exists – even if it is not explicitly

documented. It must be extractable from the source code of any running

system since the system is a transformation of the system gist, no matter

how that gist was captured in the first place. Maybe the system gist is held in

documents outlining requirements or prose text that describes scenarios the

system should solve or support. Maybe the developers were obligated to

write other prose documents that act as the documentation of the produced

software. Documenting software is boring compared to coding for any

developer. Code can be compiled and type-checked so that the bugs can be

removed. Code can also be executed and further tested to ensure that the

ideas we wanted to cover are covered. Documentation does not work that

way. Most likely, any existing documentation is filled with bugs beyond belief

since the verification process lacks compilation and testing. Since developers

suspect this, developers seldom trust and consult the documentation of

existing software systems. Instead, they tend to go to code. If the only option

is prose documents, they are probably correct. Even if the developer finds

information in the code – it is important to remember that the code is just the

original developer’s interpretation of the requirement – and this need not be

equal to the requirement. Software tools and libraries may follow other rules,

but, when an experienced developer is confronted with a software system,

they very seldom expect that the documentation is complete or correct. Prose

Page 10

The MDriven Book
documentation of system-gist is, for the reasons stated above, rarely used for

anything except making the stakeholders feel a bit safe – like life jackets on

an airliner that flies over land. It was never intended to help anyone, but the

stakeholders want it so we provide it. Another way I have come across to

protect and keep the know-how that is the system gist is what I would

describe as “invest in the team”. Let skilled and motivated software

developers solve things with their talent and memory. Let the collective team

memory be your know-how and documentation of the system gist. This is the

common way for most businesses that produce software that I have come

across. I argue that this is not a strategy. It is an abdication of ownership and

control. Developers might not see this as a problem, at first, since they take

pride in the trust management places in them. Still, I have seen many cases

over the years where this strategy created a chasm between the ones that

know (developers) and the ones that make decisions (management). It

usually ends with a collapse that benefits no one. Since developers are now

left on their own to decide where the resources should go – into system gist

or modernity or maybe into fashion, they will soon lose the management's

trust since management lacks control and does not understand why the

developers chose to prioritize the way they do. Nevertheless, this is

commonly how small and midsized businesses handle their software

investments today. Let the code speak for itself – there is no other

representation of the ideas within the software than the code itself. The same

code strongly flavored by the team members takes on what is modern and

what is fashionable this year – or was last year. The MDriven Book - Next

Chapter: Luckily UML is Not Forbidden

Page 11

The MDriven Book
Luckily UML is NOT forbidden

Write the content here to display this box For prose document writers and

nothing but code cowboys, there is a missing link – a way to describe system

gist separated from the flavor of the year implementation method in a format

that is not as flimsy and open to interpretation as prose documents. What I

propose here – and what many have proposed before me – is that we can

document with models. The models are more descriptive than prose text,

leaving less room for alternate interpretations. At the same time, models are

less complex and easier to read than code written in the flavor and style of

the year. The model is then home to the system gist. Here it can be

understood, discussed, criticized, and evolved long before it has taken the

expensive form of implementation code. What is somewhat new in what I say

is that models can be compiled and executed just like code. We can then

focus on using the current modern technique to execute the model. This way,

the modeled solution can have a much longer lifespan than the user interface

or delivery method heavily subjected to modernity and fashion. Models can

cover the uniqueness and true solution of your software. A model executor

brings your model to life in a specific environment. When one model executer

goes out of style and something new is requested by the market, we do not

rewrite the system gist. We create a new model executer and feed it the

same model. MDriven is the latest model executer we have created – but we

have been involved in making many. A model that was executed with Delphi

1999 (BoldSoft) can be executed with c# MVC5 or with WPF (CapableObjects)

today. It was executed with Windows Forms in 2003 (Borland, Embarcadero),

with Silverlight in 2007, and with ASP.NET in 2005. No doubt, there will be

Page 12

The MDriven Book
new model executors when modernity so requires – and sure enough, MDriven

Turnkey that brings any system gist to AngularJS is currently available. One

key to a good investment in software is to avoid entangling things that

change for different reasons and with different intervals and speeds. Your

system gist changes and evolves along with the business it supports. The

modernity of the solution changes by market forces no one can control, but

everyone must adapt to it. I propose we keep these two areas apart so that

they do not get confused as being the same problem. I define Model-driven

development as developing a system gist in its own machine-readable format.

Build a software machine that turns the system gist into a complete software

system and fulfills the required modernity aspects. Giving such a machine a

descriptive name: ModernGistExecuter – we at MDriven call our

implementation MDriven Framework. The MDriven Book - Next Chapter: What

is not to like

Page 13

The MDriven Book
What is not to like?

Write the content here to display this box Having worked with model-driven

development for the last 20 years, I have been surprised many times by how

much resistance we have met. It is not like other developers are indifferent or

do not care. Many do care – but the reactions are surprisingly often skeptical

and negative. We have tried to take this as an indication that we are on to

something relevant and beautiful. Big and disruptive shifts never come

without agony and pain. The suggestion is that it is a defense mechanism

that kicks in. People are afraid that model-driven development will change

their current setup – and resistance to change is natural and triggers

unconsciously. I do not believe in the anti-change theory. I think it is a simple

case of not correctly separating the different issues at hand: modernity

versus gist. Modernity and Gist Developers know that everything changes.

Experienced developers have been left stranded with abandoned techniques

and products throughout their careers. It is not a good feeling nor is it good

for business or the credibility of the developers. No one likes to be forced into

change by external influence, but a product that has lost new development

and support must be replaced. This has led most developers to a minimalistic

approach to using products. Minimalistic or gigantic – trust only the really big

companies in software like Microsoft or Oracle – and things that are

transparent like open source and simple tools. The problem with traditional

development that blends and mixes modernity with system gist is that

change hits so hard. Everything must be rewritten once a technology change

is required. If the gist changes a lot – rewrite. If modernity changes a lot –

rewrite. If the fashion changes heavily – rewrite. There are more reasons to

Page 14

The MDriven Book
abandon made investments than what any investor dares to think about. All

this is because of the mix-up of the three different areas. If we separate the

gist from modernity, we will find that most changes in technology leave the

gist untouched. All different types of gist will be handled by many different

approaches and technologies over their lifetime. For this, we can plan from

the start. Since few have had the opportunity to try this in real life, few know

the benefits it brings. Separating the gist from modernity protects that part

of the system from the IT wind-of-change that is always blowing at hurricane

strength. At the same time, free up the modernity area to change without

having to change all the gist stuff at the same time. Both areas will win by

keeping this separation. As an information architect or developer of a domain

work organization, the gist is the most interesting area. It is the theory and

motive. This is also where the structural capital of the enterprise resides.

Having this documented in a useful and actively maintained format is very

attractive to any business. For classic software architecture, Modernity is

extremely important as it ties into the projected lifespan of the system,

maintainability, how hard it is to build, usability concerns, security,

efficiency, and overall investment sanity like “our maintenance burden must

not be too disparate”. However, for a business wanting to build in-house

systems to become more automated the modernity aspect is still important

but they should put system gist in the front seat. It will be good for the whole

business to structure their knowledge of whom they are and how they do

things. I agree that if you use no tools to manage your gist, it is easier to just

mix gist and modernity and let it stew. Then sit back and wait for the

inevitable rewrite need that forces you to do it all again. I propose that this is

the wrong approach and an approach that is not very smart or efficient.

Page 15

The MDriven Book
Looking back on many discussions over the years, I now believe that a lot of

developers and software architects do not separate the system gist area from

modernity with enough clarity. Many software developers also focus mainly

on modernity issues – after all, as a professional developer, this is what you

can reuse for different clients that all have different gist. I believe that this

limits their ability to produce robust long-term systems. I suspect that this is

part of the explanation for why software development has too low a success

rate. It can also explain why legacy ERP systems that are so far from

modernity that it hurts still have an appeal in the industry. I believe we must

be vigilant to correctly identify modernity and fashion arguments when

solving system gist problems. If not, people will wrongfully let modernity or

fashion arguments color their gist and by doing so, confuse both other

developers and stakeholders. This book is primarily on how to use MDriven to

handle and manage gist and secondarily, how to use MDriven to help you

manage modernity. I will show how the modernity issues are managed with

standard techniques in Visual Studio with no limitations or assumptions – so

that you are ready for all new modernity requirements that will be sailing up.

Lastly, this book will cover how the gist and modernity offered by MDriven

Framework are easily dressed up with the current fashion. The MDriven Book

- Next Chapter: What is next

Page 16

The MDriven Book
What is next

Write the content here to display this box I propose and will show examples

of how you can maintain the gist and idea of your software in a model – and

how you can apply existing or create your model execution engines to act as

modern and current delivery mechanisms for your solutions. The steady pace

of shifts in the market's perceptions of what is new and cool often paralyzes

companies from building support systems and with them, control their

information. The main problem is that most techniques today mix the two

different problems of the system gist and modernity. Entangling these two

problems makes solving them as one hard and risky and something that many

businesses will avoid. To summarize: Model centric – describe the system gist

in a model that uses a model executer of correct modernity level to bring it to

life. The model is then the documentation, the know-how, and the gist of the

system– invest heavily in this. Put modernity and fashion in the model

executer and into the user interface and delivery –invest in this too but keep

in mind it may change soon. Make sure you involve management in the

system gist governance so that they are in control and can make informed

decisions. The series of tools and strategies presented here reduces the

effort needed for businesses to take control of and own their information. It

does so by introducing a clear separation between system gist and

modernity. I believe that companies that own and control their information

are better equipped to compete than companies that are clueless about it. A

no-brainer, of course – but still – most companies lack a good and deep

understanding of their information. The few that have control often spend too

much on resources, trying to evolve system gist and modernity in one

Page 17

The MDriven Book
complex and risky process. It is the aim of the tools and strategies presented

in this book to show new ways to produce and maintain domain-specific

software support systems – and to vastly reduce the costs and increase the

quality and speed of how to produce and maintain them. It is not magic – it is

just a matter of raising the abstraction level a bit and refraining from

entangling problems that are much better solved separately. The MDriven

Book - Next Chapter: Information design

Page 18

The MDriven Book

Information design

Page 19

The MDriven Book
The Information

Write the content here to display this box I claim that for understanding a

business, you should understand its information – what it deals with – the

information it creates while it produces its product. Others may argue that

the processes are the most important part – but I differ. If you know the

information first, you know – or can figure out - what processes must be

present that create this information. If you just know the processes, you still

do not really know the information. As a software architect, you can use the

phrase “follow the information” in the same sense as detectives of crime use

“follow the money”. You will find the truth this way. When you follow

information, it is easy for all to see if it is valuable information or not, but

when following processes, you track work that is performed currently.

Suppose you found an unneeded process step – how will you know that it is

unneeded? You cannot get a correct answer from the ones performing it now

– since they are biased that it is important - and no one else will have enough

information to really know. If you learn the important information first, you

can easily see what the process step at hand does to that information. It

should evolve the information in some way. If it does not create or change

information in a valuable way the process step is unnecessary – for this

business at least. The Information There are many ways to describe

Information. My recommendation is UML – the Unified Modeling Language.

UML contains a set of rules – and it lets you describe everything you need

without further need for interpretation. UML is the core defining the models

available in MDriven. This book will use UML extensively. The MDriven Book -

Next Chapter: Short introduction to UML– class diagram

Page 20

The MDriven Book
Short introduction to UML- class diagram

Page 21

The MDriven Book
Association classes

Write the content here to display this box Associations define the relationship

between Classes. Whenever you need additional information on that

relationship, association classes will come in handy. Model 1: {{image:Model

1 Association classes.png|frameless|377x377px}} Even if the Association

class is often used for many to many relationships, you can use them on the

association of any cardinality. Model 2: {{image:Model 2 Association

classes.png|frameless|349x349px}} OR-mapping (the process of taking an

object-oriented model (a standard UML class diagram) and transforming it

into a relational database schema (tables, fields, primary and foreign keys))

will turn this model into three tables; one to store Person, one to store Flight

and one to store Booking. If you had not used the association class,

OR-mapping would still create three tables due to the many-to-many

associations. The third table would store two foreign keys, one to identify the

Person and one to identify the Flight. The third table would implicitly be

named, if you did not explicitly give it a name, to PersonFlight or

FlightPerson. This table the DB-guys often refer to as a link table. The funny

thing is that modeling this another way will give the same OR-Mapping result:

Model 3: {{image:Model 3 Association classes.png|frameless|321x321px}}

This will also end up in the database as three tables where Booking points out

Person and Flight with one foreign key for each. So for a DB-centric guy, this

is the same… To an OO guy, this is NOT the same. What is the Difference? The

rules that association classes adhere to in any well-behaving MDD framework

are these: # Lifetime control: The booking cannot be explicitly created. It is

created as a consequence of associating a Person with a Flight:

Page 22

The MDriven Book
aPerson.Flights.Add(aFlight). It is destroyed automatically whenever the

association is removed: aPerson.Flights.Remove(aFlight) # Uniqueness: In

UML, one instance must be unique in the relation; you cannot add one person

to a flight twice. This way, using the association class has effectively given

the UML reader the information that a person can only be one passenger at a

time - not two. Whenever you see the need for lifetime control and

uniqueness, use the association class. It will help the reader and the

developer – the DB guy will not know the difference - however, they seldom

do. (Side note: Entity Framework does not currently support association

classes. They argue there is no need since the Model2 can be replaced with

Model3 (No surprise since they are DB guys.).) Adding a Link Object Look at

Adding a link object for an example of EAL to help you easily handle adding a

link object. The MDriven Book - Next Chapter: UML Inheritance

Page 23

The MDriven Book
Inheritance

Write the content here to display this box With the ambition to make it easy

for people to benefit from object-oriented approaches using MDriven and

MDriven Designer, I will give a quick introduction to UML inheritance. * UML

inheritance differs from “I get you stuff when you die.” It is also different

from “Oh, look, that kid really looks like her Mother.” * UML inheritance is

this: “A child class has all attributes and associations that a parent class has,

and the child also has attributes and/or associations of its own that the

parent does not have.” In other words, UML inheritance is “specialization”

and “generalization”; a child class is a “specialized” version of the parent,

and a parent is a more “generalized” definition of the child class. * UML

inheritance is the same as OO inheritance (Object-oriented inheritance). *

UML inheritance will allow you to inherit the properties of multiple parents –

but very few OO languages allow for so-called multiple inheritances (c++

does, c# & VB.NET does not, and since ECO focuses on the latter languages,

ECO does not support it either), so I will not mention multiple inheritances

again in this post. This means a class can have only one parent class (or no

parent class, but never many parents). An Example Fruit. Fruit is a pretty

generic class. If we think of specializations of fruit, we will find Apple,

Orange, Pear, Banana, Pineapple, etc. {{image:FRUIT

MODELS.png|frameless|278x278px}} The lines ending with the big arrow are

called a Generalization-association, meaning that if you follow it, you get

something more generalized of the class that you leave. If you follow it in the

other direction, you get the opposite of generalization – specialization. You

will notice that in MDriven when you add generalization associations, the

Page 24

The MDriven Book
class’s superclass is updated in the object inspector. {{image:Properties

fruits.png|frameless|314x314px}} Superclass is a more correct UML term

than “Parent class.” Instead of “Child class,” the correct UML terminology is

Subclass. So I will use Super- and Subclass from now on. Why is Inheritance

So Useful? The obvious benefit of inheritance is the ability to introduce

common properties that all fruit has in one place. If there are properties that

all fruits have, they will go into the Fruit class rather than defining them over

and over in the subclasses. {{image:Model fruits +

subclasses.png|frameless|377x377px}} The true power of inheritance is that

it resembles how people reason and think. As humans, we always generalize.

Our language and communication depend on it. This fact is the reason for

some bad things in society – prejudice where we jump to conclusions based

on earlier experience or hearsay – and some good things, like instantly

knowing how to use a door knob even if we have never seen that particular

type of door knob before. With the model we now have, we can see the

benefit that strong types give. Our code will now look like this: 1: Country

malaysia=new Country(this.ServiceProvider()); 2: 3: Apple apple = new

Apple(this.ServiceProvider()); 4: Orange orange = new

Orange(this.ServiceProvider()); 5: 6:

apple.GrowsInTheseCountries.Add(malaysia); 7:

orange.GrowsInTheseCountries.Add(malaysia); 8: 9: foreach (Fruit fruit in

malaysia.ExportsTheseFruits) 10: { 11: if (fruit is Apple) 12: { 13: // Do apple

specific operations 14: } 15: else if (fruit is Orange) 16: { 17: // Do orange

specific operations 18: } 19: } The MDriven Book - Next Chapter:

Polymorphism {{Edited|July|12|2024}}

Page 25

The MDriven Book
Polymorphism

Write the content here to display this box Polymorphism is a fancy word for

an important concept: poly = many, morph = shape => many shapes. In our

example, we use polymorphism in the association from country to fruit -

namely, a resulting list that can contain different subclasses of fruit such as

apples, oranges, etc. Polymorphism allows us to operate on stuff we do not

know much about. Check this out: {{image:Fruit model

2.png|frameless|328x328px|link=https://wiki.mdriven.net/index.php/File:Fruit

_model_2.png}} I add a method on Fruit that I make virtual:

{{image:Properties

2.png|frameless|349x349px|link=https://wiki.mdriven.net/index.php/File:Prop

erties_2.png}} I can implement this to return a default value on Fruit and

override it on the subclasses that should return a different value:

{{image:Overrided subclasses

fruits.png|frameless|355x355px|link=https://wiki.mdriven.net/index.php/File:

Overrided_subclasses_fruits.png}} 1: public partial class Fruit { 2: public

virtual bool HasSeedsYouNoticeWhenYouEat() 3: { 4: return true; 5: } 6: } 1:

public partial class Banana { 2: public override bool

HasSeedsYouNoticeWhenYouEat() 3: { 4: return false; 5: } 6: } Having this, I

write code that goes over a list of Fruit and ask if the fruit

HasSeedsThatYouNoticeWhenYouEat like this: 1: List crapfruit = new List(); 2:

List okfruit = new List(); 3: foreach (Fruit fruit in

malaysia.ExportsTheseFruits) 4: { 5: if

(fruit.HasSeedsYouNoticeWhenYouEat()) 6: crapfruit.Add(fruit); 7: else 8:

okfruit.Add(fruit); 9: } If you are still with me, I also want to mention the

Page 26

The MDriven Book
concept of “Abstract”. When we have a model like the one above, think of the

Fruit class as being abstract – meaning that having an instance of a fruit (a

real fruit) that is of type Fruit should not be legal. A fruit-instance must be

one of the subclasses; it can be an Apple, Pear, Orange, Banana, or Pineapple

(in our model) but never just “Fruit.” In Object Orientation terms, Abstract

means that the compiler will treat any attempt to create an instance as an

error. It is an error because the developer that defined the class never

intended it for direct use; it was designed as an abstraction or generalization

of a set of subclasses. My recommendation is to always treat classes that

have subclasses (aka superclasses) as being abstract. In the Fruit sample

above, this might be obvious, but remember this when you classify your

domain where it might not be so obvious. The MDriven Book - Next Chapter:

Composite and Aggregate and what they imply

Page 27

The MDriven Book
Composite and Aggregate and what they imply

Write the content here to display this box Associations between classes are

easy enough to understand. Car has 4 wheels.

{{image:Car4wheels.png|frameless|307x307px}} But in the information

system we build, it may be obvious that a Car owns all its Wheels; the car and

all its wheels can be looked at as a complete entity of their own – a

composite. If the Car is scrapped, the wheels are also implicitly thrown away.

A Composite in UML is created by decorating the association with a filled

diamond: {{image:Diamond.png|frameless}} For any well-behaving MDD

tool, this decoration should imply a cascading delete of all associated wheels

when the Car is deleted. A composite also signals to the UML reader that the

Car and Wheels are created at the same time and may not be meaningful on

their own. So some will argue that the model should be changed from “0..1

Car” to “1 Car” (i.e wheel must always belong to exactly one car):

{{image:Diamond 2.png|frameless|124x124px}} On the other hand, this

might not be the best idea for the domain we are modeling now. If the system

we build is one that describes a garbage sorting facility, we may want to say:

“Yes, a car often has wheels, and the car and its wheels can be looked at as

an entity of their own (a composite), but we sometimes want to take this

composite apart and treat the parts separately”. If this is the case, the

aggregate decoration can be used:

{{image:Aggregate.png|frameless|143x143px}} The aggregation symbol

signals to the UML reader that the connection between Car and Wheel is

“strong and common” and that “Car owns wheels” is more appropriate to the

domain than “Wheel owns Car” (this also applies to the composite symbol). A

Page 28

The MDriven Book
well-behaving MDD tool should probably prohibit the deletion of a Car until

the Wheels are gone - so that the scrap yard guys do not delete a car while

the valuable wheels are still on it. To sum it up: Composite is stronger than

Aggregate. Both symbols imply that the domain sometimes looks at the

classes as a bigger unit. The symbols help the UML reader understand the

larger compositions in the domain. The symbols imply specific destruction

behavior to well-behaving Model-Driven Development Frameworks

(MDD-Frameworks). What Does MDriven Do Each Association end in MDriven

has the “Delete Action” property: {{image:ECO Delete

action.png|frameless|299x299px}} The DeleteAction can be set to one of

these values: {{image:Default.png|frameless}} {| class="wikitable sortable"

|DeleteAction on the Wheels Association |Calling Car.AsIObject().Delete() |-

|Allow |will work even if you have wheels left on the car, but the wheels will

be left dangling |- |Prohibit |will not work as long as you have wheels on the

car |- |Cascade |will delete any remaining wheels |- | |If the association end is

Composite, treat as Cascade; if the association end is Aggregate, treat as

Prohibit; if the association end has aggregationnone, treat as Allow |} The

recommendation is to leave the DeleteAction on and use the Aggregation

setting to control the delete action AND help UML readers understand the

domain. Deleting Wheels Without the Car Assuming that your context is the

Car: this.Wheels.delete would delete the wheels. Note! Not only unlinking

them. If you would like to unlink them, do: this.Wheels->clear Note: if you use

the aggregation of type Composite, you would create "floating" objects that

have a validation error of not having the Car association set. The MDriven

Book - Next Chapter: Derived attributes & associations

Page 29

The MDriven Book
Derived attributes & associations

Write the content here to display this box Derived attributes have been in

MDriven for ages. To an SQL guy, derived attributes resemble calculated

fields. Derived attributes are like calculated fields that subscribe to all the

values they are calculated from. Whenever data is seen by the expression and

changed, the derived attribute is marked as out-of-date. The next time you or

your UI tries to read it, the attribute is re-evaluated. The key thing with

derived attributes is that they are NOT calculated each time you access an

attribute. If such were the case, the performance would suffer. It is calculated

(or derived) as few times as theoretically possible - only when read the first

time after a change of anything that the derivation expression looks at. The

concept of derivation relies on the concept of subscription; everything in your

domain layer can signal whenever it is changed (the publisher pattern), and

subscribers subscribe to publishers to detect these changes. Although this is

a different story, I must mention that publishing events to catch changes is a

key difference between the ECO approach to implementing a domain layer

and the POCO way (plain old c#-objects) like NHibernate and some other

frameworks use. {{image:ModelOrder+Customer.png|frameless|395x395px}}

Having a model like the one above, I can create a derived attribute on the

Order that calculates the total shipping cost by checking the products

ordered and the customer’s country in OCL:

self.OrderItems->FilterOnType(ProductThatNeedsShipping).Weight->sum *

self.Customer.Country.CostToShipHerePerKilogram I do this by creating a

new Attribute, setting the AttributeMode to Derived, and filling in the

DerivationOCL. Derived attributes can be used in other derivation expressions

Page 30

The MDriven Book
so I can make a derived TotalCost without repeating the definition of the

Shipping cost: self.OrderItems.Product.Price->Sum() + self.ShippingCost The

expression of derived attributes can be expressed with C# / VB.NET /

Delphi.NET code instead of in OCL (MDriven for Visual Studio). Do this by

setting the AttributeMode to Derived as before but leaving the DerivationOCL

property empty. Generate code and inspect the Order.eco.cs file. At the

bottom of the file, you will see these stubs: Code Snippet /// This method is

called when ShippingCost needs to be calculated partial void

ShippingCostDerive(ref string res); /// This method is called when TotalCost

needs to be calculated partial void TotalCostDerive(ref bool res); Never

change the files named something.eco.cs. Instead, implement these partial

methods in the file something.cs (or vb or Delphi). So in this case, open up

the Order.cs file and enter: Code Snippet partial void ShippingCostDerive(ref

double res) { res=0; double totWeight=0; foreach(OrderItem i in OrderItems)

{ if (i is ProductThatNeedsShipping) { totWeight += (i as

ProductThatNeedsShipping).Weight; } } if (Customer!=null &&

Customer.Country!=null) res = totWeight *

Customer.Country.CostToShipHerePerKilogram; } Exception Please note that

because of how time flows, you can't subscribe to time, like DateTime. Now, if

it could, it would always need updating and lead to an infinite update loop.

See also the Default String Representation and asString which are not

subscribed. What to Remember All you need to remember is that derived

attributes can be defined in code or in the model with OCL. Derived attributes

are efficient and always return the correct up-to-date result. Associations can

also be derived in the same way as attributes. In the example model above,

the Shipping cost is out of date if: you add a new order line or change the

Page 31

The MDriven Book
customer, or the customer changes country, or an already picked product

that needs shipping gets an updated weight, etc. It covers every and any

change that affects the calculation as long as that change is part of your

domain layer. I hope that you see the positive effect this will have on your UI

implementations – showing the shipping cost and seeing it update as you

change anything it depends on by one central definition far away from the UI.

Using derived attributes and associations cleans up your code and

consolidates central definitions to single points and thus, greatly reducing

maintenance costs and efforts. Having the definition in OCL also makes the

derivation a part of the documentation – the model – rather than just the

implementation. See also: * Derived settable attributes * Derived settable

associations C# and the AutoSubscribeService In versions of the product ECO,

you needed to explicitly explain to ECO what ECO should subscribe to stay

updated if anything changes. Since the introduction of the

IAutoSubscriptionService, this is no longer necessary. The

IAutoSubscribeService deserves a chapter of its own, but here is a brief

overview:The caller of your code derivation has a subscriber and starts an

Auto subscription session. An Auto subscription session is notified about all

access to the domain layer as long as the session is in effect. All access is

inspected and builds up the description of what ECO needs to subscribe to in

order to know when to mark the attribute out of date. The session is ended

after your code derivation returns.Conceptually, this is what happens: Code

Snippet using

(this.AsIObject().ServiceProvider.GetEcoService().StartSubscribe(subscriber))

{ double res; this.ShippingCostDerive(ref res) } The MDriven Book - Next

Chapter: UML – State machines

Page 32

The MDriven Book
UML - State machines

Page 33

The MDriven Book
Constraints

Write the content here to display this box There are other ways to introduce

business rules in the model than using state machines and guards. You can

use Constraints. The model already has several implicit constraints from the

cardinalities of the association ends. If you have cardinality 1..4 and you have

zero objects in that relation – then you have a broken constraint. Define

Constraints You may also define your own constraints: {{image:Model car

constraints.png|frameless|397x397px}} You can choose if a broken

constraint (a constraint that evaluates to false) should be treated as

Information, Warning, or an Error to the user. Delete Constraints You can also

define the constraint as being a delete constraint only: {{image:Constraint

wrappper.png|frameless|437x437px}} This way, you have explained at the

model level that the domain does not consider it acceptable to delete a

Car-object as long as we have the deposit unless it is in state Scrapped. The

delete constraints will be checked when Deleted by MDriven. As a result, the

Delete operator is executed on the class. Other things that are checked when

the Delete operator is run are the Business Delete Rules that exist on all

association endpoints: {{image:Business delete

rule.png|frameless|438x438px}} As modelers, we should decide the best rule

for each association end. In this case, is it acceptable to delete a Brand if

Cars are left in the AllCarsOfThisBrand association? No, I think not. I am

setting it to “MustBeEmpty.” The association is in the other direction on the

other hand. {{image:Business delete rule need not be

empty.png|frameless|438x438px}} I set that to

“NeedNotBeEmptyNoWarning” – because deleting a car object is okay even if

Page 34

The MDriven Book
it has a brand. Constraints Evaluation in OCL If you want to evaluate

constraints in OCL, use OCLOperators constraints, for example. Usage of

Constraints Constraints automatically show up in ViewModels - but you may

opt them out on a per-ViewModel level: {{image:2021-04-08 10h46

32.png|none|thumb|484x484px}} You can also access Constraints and their

"brokenness" via OCL Operators brokenConstraints and Constraints:

{{image:2021-04-08 10h48 43.png|none|thumb|454x454px}}The MDriven

Book - Next Chapter: The ViewModel See also: OCLOperators_constraints

Page 35

The MDriven Book

The ViewModel

Page 36

The MDriven Book
The declarative ViewModel

#REDIRECT Documentation:ViewModel

Page 37

The MDriven Book
Taking it further still

Write the content here to display this box If the cost of creating and

maintaining a ViewModel were high, fewer ViewModels would be created. Our

mission is to reduce the cost of creating and maintaining them. WPF is a

declarative way to describe the UI. This means that the same basic look-less

components like TextBlock, TextBox, CheckBox, Combobox, and Image, etc

will be used again and again and they will be given a look by an external style

or template. What if we use this fact to provide some basic rendering/placing

hints for the ViewModel columns? We could then use those clues to spill out

the correct look-less control in the intended relative position; we would not

need to mess about with XAML every 5 minutes. This is what the

ViewModel-Editor looks like without rendering hints: {{image:View Model

Further

still.png|frameless|448x448px|link=https://wiki.mdriven.net/index.php/File:Vi

ew_Model_Further_still.png}} And this is the way it looks like when I have

checked the “Use Placing Hints” checkbox: {{image:VM

UI.png|frameless|453x453px|link=https://wiki.mdriven.net/index.php/File:VM_

UI.png}} Given the extra fields for “Presentation”, “Column”, ”Row”, ”Span”

etc, I can work the ViewModel – review to look like this: {{image:MV UI

2.png|frameless|450x450px|link=https://wiki.mdriven.net/index.php/File:MV_

UI_2.png}} Now, I really need to stress this so that I do not get

misunderstood: We are not designing the presentation here at all. We are

describing what data is available, which values are valid, possible selection

lists of data, and, if the UI designer wishes to take notice of it, *hints* as to

how to arrange the controls in relation to each other - which happens to give

Page 38

The MDriven Book
the option of generating the user-interface automatically by whatever front

end is currently in fashion. This is all the natural information we have in mind

while designing the ViewModel. Having a ViewModel with placing hints, you

can add a ViewModelWPFUserControl to your form with just one row: And the

result is: {{image:VM UI The

game.png|frameless|392x392px|link=https://wiki.mdriven.net/index.php/File:

VM_UI_The_game.png}} Remember that these auto layout controls also

adhere to external set styles. Having the ability to get simple UI

automatically derived from the ViewModel, placing hints lowers the effort to

produce and maintain. Experience has shown that a lot of the administrative

parts of your application are left automated so that more time can be spent

on the signature screens that are most important for your users. Note: the

#Span.Savebar is a tagged value feature that can be helpful on your

ViewModel. The MDriven Book - Next Chapter: What an Action can do See

also: *Seeker view *UIOverride *Development info in runtime *Edit in Grid

*ViewModel access and security *Custom controls in ViewModel-aided Views

Page 39

The MDriven Book

What an Action can do

Page 40

The MDriven Book
ExecuteExpression

Write the content here to display this box Actions can do a couple of things.

ExecuteExpression {{image:Can do action -2.png|frameless|466x466px}} The

ExecuteExpression is an Extended-Action-Language expression that is rooted

in some context. For GlobalActions, this context is null. What you can do is

limited to expressions that stem from a class of your model, like

X.allinstances or X.Create. The EAL Editor is displayed by the button next to

the expression: {{image:Can do action -1.png|frameless|330x330px}} If the

Action is a ContextAction, you get access to the variables that the context

defines. These are named: vCurrent_TheViewModelClassName. You can either

act on classes as with GlobalActions or act on the current value of variables

from the context. The variables follow the selections the users make in

ViewModel grids, so you can act on things the user has selected. When you

have an object context like this, you can call methods that the objects class

defines: {{image:Can do action -5.png|frameless|398x398px}} You can use

all the attributes and navigate all the associations in as many steps as you

need to get the desired effect. If the action is a ClassAction, the action is

rooted in an object of that class, and you use the OCL identifier “self” to

operate on this. EnableExpression The EnableExpression is very similar to the

ExecuteExpression, except it is not an EAL expression but rather, an OCL

Expression. As such, it cannot have side effects (it cannot change anything in

your domain of objects). The EnableExpression must also evaluate to a

Boolean value of true or false. {{image:Can do action

-3.png|frameless|360x360px}} Except for these differences, the expression

operates in the same context and can reach the same variables, etc., as

Page 41

The MDriven Book
described for the ExecuteExpression. {{image:Can do action

-6.png|frameless|376x376px}} The EnableExpression is used to control

whether an action should be executable or not. Consider that you have a

state machine on class X and you only want the Delete action enabled when X

is in the state Deletable: self.oclIsInState(#Deletable) BringUpViewModel &

ViewModelRootObjectExpression An action can bring up a ViewModel-defined

UI, and when it does, it will assign the Root object of the ViewModel, the

result of the ViewModelRootObjectExpression. If the ViewModel RootObject

Expression is empty, the Root object of the brought-up ViewModel-defined UI

will be unassigned – and this might be perfectly fine for certain types of UIs,

like UIs designed to seek persistent storage, for example. ViewModelIsModal

& ExpressionAfterModalOk {{image:Can do action

-7.png|frameless|368x368px}} If the action is set to bring up a

ViewModel-powered UI, you may also choose to bring that UI up as a Modal

window (a dialog you need to Ok or Cancel to get away from). The WECPOF

runtime will add an OK and Cancel button to the bottom of your window if this

is set. If the user clicks Cancel in such a window, nothing else happens

besides the fact that the window is closed. However, if the user clicks Ok, the

WECPOF runtime will execute the ExpressionAfterModalOk if you have

defined it. The ExpressionAfterModalOk is an EAL expression that works on

the context exactly as the ExecuteExpression does, but the

ExpressionAfterModalOk also brings the variables from the ViewModel UI that

were modal and are now closing. This fact enables you to read the values of

the window about to close and to apply these values to your current context.

The variables taken from the window that is closing are prefixed with

“vModalResult_” to avoid name collisions with the calling context.

Page 42

The MDriven Book
{{image:Can do action -8.png|frameless|388x388px}} This will enable you to

create a Seek/Pick/Assign pattern in a WECPOF application. Consider that you

have a Car-rental-model, you have a ViewModel that shows the rental

contract and you now need to assign a Car to the Contract. The choice to use

a ComboBox to scroll and find a car is no good because the number of

possible Cars is 500+. Instead, add a ContextAction to the Rental contract

ViewModel that brings up the Free-Car-Seeker-ViewModel, and you tick the

ViewModelIsModal checkbox. You also define the ExpressionAfterModalOk to

be vCurrent_RentalContract.AssignedCar:=vModalResult_Current_PickedCar.

Framework Action If you pick a framework action, none of the other

expressions will apply. {{image:Can do action -9.png|frameless|418x418px}}

The Framework action is added to allow access to functions that operate on a

different level than your model. * Save – saves the changed (created, deleted,

updated) objects using the persistence mapper you have used in your

EcoSpace (Or in Gaffr). * Refresh – calls refresh on your Persistence mapper if

it supports Refresh (set up sync server to allow) * Undo/Redo – calls undo or

redo on your ecospace. The current WECPOF runtime uses a timer to create

new undo-blocks every other second if there are new changes. * Exit – quits

the WECPOF application The MDriven Book - Next Chapter: Global actions

{{Edited|July|12|2024}}

Page 43

The MDriven Book
EnableExpression

Write the content here to display this box Actions can do a couple of things.

ExecuteExpression {{image:Can do action -2.png|frameless|466x466px}} The

ExecuteExpression is an Extended-Action-Language expression that is rooted

in some context. For GlobalActions, this context is null. What you can do is

limited to expressions that stem from a class of your model, like

X.allinstances or X.Create. The EAL Editor is displayed by the button next to

the expression: {{image:Can do action -1.png|frameless|330x330px}} If the

Action is a ContextAction, you get access to the variables that the context

defines. These are named: vCurrent_TheViewModelClassName. You can either

act on classes as with GlobalActions or act on the current value of variables

from the context. The variables follow the selections the users make in

ViewModel grids, so you can act on things the user has selected. When you

have an object context like this, you can call methods that the objects class

defines: {{image:Can do action -5.png|frameless|398x398px}} You can use

all the attributes and navigate all the associations in as many steps as you

need to get the desired effect. If the action is a ClassAction, the action is

rooted in an object of that class, and you use the OCL identifier “self” to

operate on this. EnableExpression The EnableExpression is very similar to the

ExecuteExpression, except it is not an EAL expression but rather, an OCL

Expression. As such, it cannot have side effects (it cannot change anything in

your domain of objects). The EnableExpression must also evaluate to a

Boolean value of true or false. {{image:Can do action

-3.png|frameless|360x360px}} Except for these differences, the expression

operates in the same context and can reach the same variables, etc., as

Page 44

The MDriven Book
described for the ExecuteExpression. {{image:Can do action

-6.png|frameless|376x376px}} The EnableExpression is used to control

whether an action should be executable or not. Consider that you have a

state machine on class X and you only want the Delete action enabled when X

is in the state Deletable: self.oclIsInState(#Deletable) BringUpViewModel &

ViewModelRootObjectExpression An action can bring up a ViewModel-defined

UI, and when it does, it will assign the Root object of the ViewModel, the

result of the ViewModelRootObjectExpression. If the ViewModel RootObject

Expression is empty, the Root object of the brought-up ViewModel-defined UI

will be unassigned – and this might be perfectly fine for certain types of UIs,

like UIs designed to seek persistent storage, for example. ViewModelIsModal

& ExpressionAfterModalOk {{image:Can do action

-7.png|frameless|368x368px}} If the action is set to bring up a

ViewModel-powered UI, you may also choose to bring that UI up as a Modal

window (a dialog you need to Ok or Cancel to get away from). The WECPOF

runtime will add an OK and Cancel button to the bottom of your window if this

is set. If the user clicks Cancel in such a window, nothing else happens

besides the fact that the window is closed. However, if the user clicks Ok, the

WECPOF runtime will execute the ExpressionAfterModalOk if you have

defined it. The ExpressionAfterModalOk is an EAL expression that works on

the context exactly as the ExecuteExpression does, but the

ExpressionAfterModalOk also brings the variables from the ViewModel UI that

were modal and are now closing. This fact enables you to read the values of

the window about to close and to apply these values to your current context.

The variables taken from the window that is closing are prefixed with

“vModalResult_” to avoid name collisions with the calling context.

Page 45

The MDriven Book
{{image:Can do action -8.png|frameless|388x388px}} This will enable you to

create a Seek/Pick/Assign pattern in a WECPOF application. Consider that you

have a Car-rental-model, you have a ViewModel that shows the rental

contract and you now need to assign a Car to the Contract. The choice to use

a ComboBox to scroll and find a car is no good because the number of

possible Cars is 500+. Instead, add a ContextAction to the Rental contract

ViewModel that brings up the Free-Car-Seeker-ViewModel, and you tick the

ViewModelIsModal checkbox. You also define the ExpressionAfterModalOk to

be vCurrent_RentalContract.AssignedCar:=vModalResult_Current_PickedCar.

Framework Action If you pick a framework action, none of the other

expressions will apply. {{image:Can do action -9.png|frameless|418x418px}}

The Framework action is added to allow access to functions that operate on a

different level than your model. * Save – saves the changed (created, deleted,

updated) objects using the persistence mapper you have used in your

EcoSpace (Or in Gaffr). * Refresh – calls refresh on your Persistence mapper if

it supports Refresh (set up sync server to allow) * Undo/Redo – calls undo or

redo on your ecospace. The current WECPOF runtime uses a timer to create

new undo-blocks every other second if there are new changes. * Exit – quits

the WECPOF application The MDriven Book - Next Chapter: Global actions

{{Edited|July|12|2024}}

Page 46

The MDriven Book
BringUpViewModel & ViewModelRootObjectExpression

Write the content here to display this box Actions can do a couple of things.

ExecuteExpression {{image:Can do action -2.png|frameless|466x466px}} The

ExecuteExpression is an Extended-Action-Language expression that is rooted

in some context. For GlobalActions, this context is null. What you can do is

limited to expressions that stem from a class of your model, like

X.allinstances or X.Create. The EAL Editor is displayed by the button next to

the expression: {{image:Can do action -1.png|frameless|330x330px}} If the

Action is a ContextAction, you get access to the variables that the context

defines. These are named: vCurrent_TheViewModelClassName. You can either

act on classes as with GlobalActions or act on the current value of variables

from the context. The variables follow the selections the users make in

ViewModel grids, so you can act on things the user has selected. When you

have an object context like this, you can call methods that the objects class

defines: {{image:Can do action -5.png|frameless|398x398px}} You can use

all the attributes and navigate all the associations in as many steps as you

need to get the desired effect. If the action is a ClassAction, the action is

rooted in an object of that class, and you use the OCL identifier “self” to

operate on this. EnableExpression The EnableExpression is very similar to the

ExecuteExpression, except it is not an EAL expression but rather, an OCL

Expression. As such, it cannot have side effects (it cannot change anything in

your domain of objects). The EnableExpression must also evaluate to a

Boolean value of true or false. {{image:Can do action

-3.png|frameless|360x360px}} Except for these differences, the expression

operates in the same context and can reach the same variables, etc., as

Page 47

The MDriven Book
described for the ExecuteExpression. {{image:Can do action

-6.png|frameless|376x376px}} The EnableExpression is used to control

whether an action should be executable or not. Consider that you have a

state machine on class X and you only want the Delete action enabled when X

is in the state Deletable: self.oclIsInState(#Deletable) BringUpViewModel &

ViewModelRootObjectExpression An action can bring up a ViewModel-defined

UI, and when it does, it will assign the Root object of the ViewModel, the

result of the ViewModelRootObjectExpression. If the ViewModel RootObject

Expression is empty, the Root object of the brought-up ViewModel-defined UI

will be unassigned – and this might be perfectly fine for certain types of UIs,

like UIs designed to seek persistent storage, for example. ViewModelIsModal

& ExpressionAfterModalOk {{image:Can do action

-7.png|frameless|368x368px}} If the action is set to bring up a

ViewModel-powered UI, you may also choose to bring that UI up as a Modal

window (a dialog you need to Ok or Cancel to get away from). The WECPOF

runtime will add an OK and Cancel button to the bottom of your window if this

is set. If the user clicks Cancel in such a window, nothing else happens

besides the fact that the window is closed. However, if the user clicks Ok, the

WECPOF runtime will execute the ExpressionAfterModalOk if you have

defined it. The ExpressionAfterModalOk is an EAL expression that works on

the context exactly as the ExecuteExpression does, but the

ExpressionAfterModalOk also brings the variables from the ViewModel UI that

were modal and are now closing. This fact enables you to read the values of

the window about to close and to apply these values to your current context.

The variables taken from the window that is closing are prefixed with

“vModalResult_” to avoid name collisions with the calling context.

Page 48

The MDriven Book
{{image:Can do action -8.png|frameless|388x388px}} This will enable you to

create a Seek/Pick/Assign pattern in a WECPOF application. Consider that you

have a Car-rental-model, you have a ViewModel that shows the rental

contract and you now need to assign a Car to the Contract. The choice to use

a ComboBox to scroll and find a car is no good because the number of

possible Cars is 500+. Instead, add a ContextAction to the Rental contract

ViewModel that brings up the Free-Car-Seeker-ViewModel, and you tick the

ViewModelIsModal checkbox. You also define the ExpressionAfterModalOk to

be vCurrent_RentalContract.AssignedCar:=vModalResult_Current_PickedCar.

Framework Action If you pick a framework action, none of the other

expressions will apply. {{image:Can do action -9.png|frameless|418x418px}}

The Framework action is added to allow access to functions that operate on a

different level than your model. * Save – saves the changed (created, deleted,

updated) objects using the persistence mapper you have used in your

EcoSpace (Or in Gaffr). * Refresh – calls refresh on your Persistence mapper if

it supports Refresh (set up sync server to allow) * Undo/Redo – calls undo or

redo on your ecospace. The current WECPOF runtime uses a timer to create

new undo-blocks every other second if there are new changes. * Exit – quits

the WECPOF application The MDriven Book - Next Chapter: Global actions

{{Edited|July|12|2024}}

Page 49

The MDriven Book
ViewModelIsModal & ExpressionAfterModalOk

Write the content here to display this box Actions can do a couple of things.

ExecuteExpression {{image:Can do action -2.png|frameless|466x466px}} The

ExecuteExpression is an Extended-Action-Language expression that is rooted

in some context. For GlobalActions, this context is null. What you can do is

limited to expressions that stem from a class of your model, like

X.allinstances or X.Create. The EAL Editor is displayed by the button next to

the expression: {{image:Can do action -1.png|frameless|330x330px}} If the

Action is a ContextAction, you get access to the variables that the context

defines. These are named: vCurrent_TheViewModelClassName. You can either

act on classes as with GlobalActions or act on the current value of variables

from the context. The variables follow the selections the users make in

ViewModel grids, so you can act on things the user has selected. When you

have an object context like this, you can call methods that the objects class

defines: {{image:Can do action -5.png|frameless|398x398px}} You can use

all the attributes and navigate all the associations in as many steps as you

need to get the desired effect. If the action is a ClassAction, the action is

rooted in an object of that class, and you use the OCL identifier “self” to

operate on this. EnableExpression The EnableExpression is very similar to the

ExecuteExpression, except it is not an EAL expression but rather, an OCL

Expression. As such, it cannot have side effects (it cannot change anything in

your domain of objects). The EnableExpression must also evaluate to a

Boolean value of true or false. {{image:Can do action

-3.png|frameless|360x360px}} Except for these differences, the expression

operates in the same context and can reach the same variables, etc., as

Page 50

The MDriven Book
described for the ExecuteExpression. {{image:Can do action

-6.png|frameless|376x376px}} The EnableExpression is used to control

whether an action should be executable or not. Consider that you have a

state machine on class X and you only want the Delete action enabled when X

is in the state Deletable: self.oclIsInState(#Deletable) BringUpViewModel &

ViewModelRootObjectExpression An action can bring up a ViewModel-defined

UI, and when it does, it will assign the Root object of the ViewModel, the

result of the ViewModelRootObjectExpression. If the ViewModel RootObject

Expression is empty, the Root object of the brought-up ViewModel-defined UI

will be unassigned – and this might be perfectly fine for certain types of UIs,

like UIs designed to seek persistent storage, for example. ViewModelIsModal

& ExpressionAfterModalOk {{image:Can do action

-7.png|frameless|368x368px}} If the action is set to bring up a

ViewModel-powered UI, you may also choose to bring that UI up as a Modal

window (a dialog you need to Ok or Cancel to get away from). The WECPOF

runtime will add an OK and Cancel button to the bottom of your window if this

is set. If the user clicks Cancel in such a window, nothing else happens

besides the fact that the window is closed. However, if the user clicks Ok, the

WECPOF runtime will execute the ExpressionAfterModalOk if you have

defined it. The ExpressionAfterModalOk is an EAL expression that works on

the context exactly as the ExecuteExpression does, but the

ExpressionAfterModalOk also brings the variables from the ViewModel UI that

were modal and are now closing. This fact enables you to read the values of

the window about to close and to apply these values to your current context.

The variables taken from the window that is closing are prefixed with

“vModalResult_” to avoid name collisions with the calling context.

Page 51

The MDriven Book
{{image:Can do action -8.png|frameless|388x388px}} This will enable you to

create a Seek/Pick/Assign pattern in a WECPOF application. Consider that you

have a Car-rental-model, you have a ViewModel that shows the rental

contract and you now need to assign a Car to the Contract. The choice to use

a ComboBox to scroll and find a car is no good because the number of

possible Cars is 500+. Instead, add a ContextAction to the Rental contract

ViewModel that brings up the Free-Car-Seeker-ViewModel, and you tick the

ViewModelIsModal checkbox. You also define the ExpressionAfterModalOk to

be vCurrent_RentalContract.AssignedCar:=vModalResult_Current_PickedCar.

Framework Action If you pick a framework action, none of the other

expressions will apply. {{image:Can do action -9.png|frameless|418x418px}}

The Framework action is added to allow access to functions that operate on a

different level than your model. * Save – saves the changed (created, deleted,

updated) objects using the persistence mapper you have used in your

EcoSpace (Or in Gaffr). * Refresh – calls refresh on your Persistence mapper if

it supports Refresh (set up sync server to allow) * Undo/Redo – calls undo or

redo on your ecospace. The current WECPOF runtime uses a timer to create

new undo-blocks every other second if there are new changes. * Exit – quits

the WECPOF application The MDriven Book - Next Chapter: Global actions

{{Edited|July|12|2024}}

Page 52

The MDriven Book
Framework Action

Write the content here to display this box Actions can do a couple of things.

ExecuteExpression {{image:Can do action -2.png|frameless|466x466px}} The

ExecuteExpression is an Extended-Action-Language expression that is rooted

in some context. For GlobalActions, this context is null. What you can do is

limited to expressions that stem from a class of your model, like

X.allinstances or X.Create. The EAL Editor is displayed by the button next to

the expression: {{image:Can do action -1.png|frameless|330x330px}} If the

Action is a ContextAction, you get access to the variables that the context

defines. These are named: vCurrent_TheViewModelClassName. You can either

act on classes as with GlobalActions or act on the current value of variables

from the context. The variables follow the selections the users make in

ViewModel grids, so you can act on things the user has selected. When you

have an object context like this, you can call methods that the objects class

defines: {{image:Can do action -5.png|frameless|398x398px}} You can use

all the attributes and navigate all the associations in as many steps as you

need to get the desired effect. If the action is a ClassAction, the action is

rooted in an object of that class, and you use the OCL identifier “self” to

operate on this. EnableExpression The EnableExpression is very similar to the

ExecuteExpression, except it is not an EAL expression but rather, an OCL

Expression. As such, it cannot have side effects (it cannot change anything in

your domain of objects). The EnableExpression must also evaluate to a

Boolean value of true or false. {{image:Can do action

-3.png|frameless|360x360px}} Except for these differences, the expression

operates in the same context and can reach the same variables, etc., as

Page 53

The MDriven Book
described for the ExecuteExpression. {{image:Can do action

-6.png|frameless|376x376px}} The EnableExpression is used to control

whether an action should be executable or not. Consider that you have a

state machine on class X and you only want the Delete action enabled when X

is in the state Deletable: self.oclIsInState(#Deletable) BringUpViewModel &

ViewModelRootObjectExpression An action can bring up a ViewModel-defined

UI, and when it does, it will assign the Root object of the ViewModel, the

result of the ViewModelRootObjectExpression. If the ViewModel RootObject

Expression is empty, the Root object of the brought-up ViewModel-defined UI

will be unassigned – and this might be perfectly fine for certain types of UIs,

like UIs designed to seek persistent storage, for example. ViewModelIsModal

& ExpressionAfterModalOk {{image:Can do action

-7.png|frameless|368x368px}} If the action is set to bring up a

ViewModel-powered UI, you may also choose to bring that UI up as a Modal

window (a dialog you need to Ok or Cancel to get away from). The WECPOF

runtime will add an OK and Cancel button to the bottom of your window if this

is set. If the user clicks Cancel in such a window, nothing else happens

besides the fact that the window is closed. However, if the user clicks Ok, the

WECPOF runtime will execute the ExpressionAfterModalOk if you have

defined it. The ExpressionAfterModalOk is an EAL expression that works on

the context exactly as the ExecuteExpression does, but the

ExpressionAfterModalOk also brings the variables from the ViewModel UI that

were modal and are now closing. This fact enables you to read the values of

the window about to close and to apply these values to your current context.

The variables taken from the window that is closing are prefixed with

“vModalResult_” to avoid name collisions with the calling context.

Page 54

The MDriven Book
{{image:Can do action -8.png|frameless|388x388px}} This will enable you to

create a Seek/Pick/Assign pattern in a WECPOF application. Consider that you

have a Car-rental-model, you have a ViewModel that shows the rental

contract and you now need to assign a Car to the Contract. The choice to use

a ComboBox to scroll and find a car is no good because the number of

possible Cars is 500+. Instead, add a ContextAction to the Rental contract

ViewModel that brings up the Free-Car-Seeker-ViewModel, and you tick the

ViewModelIsModal checkbox. You also define the ExpressionAfterModalOk to

be vCurrent_RentalContract.AssignedCar:=vModalResult_Current_PickedCar.

Framework Action If you pick a framework action, none of the other

expressions will apply. {{image:Can do action -9.png|frameless|418x418px}}

The Framework action is added to allow access to functions that operate on a

different level than your model. * Save – saves the changed (created, deleted,

updated) objects using the persistence mapper you have used in your

EcoSpace (Or in Gaffr). * Refresh – calls refresh on your Persistence mapper if

it supports Refresh (set up sync server to allow) * Undo/Redo – calls undo or

redo on your ecospace. The current WECPOF runtime uses a timer to create

new undo-blocks every other second if there are new changes. * Exit – quits

the WECPOF application The MDriven Book - Next Chapter: Global actions

{{Edited|July|12|2024}}

Page 55

The MDriven Book

Defining Main Menu Actions

Page 56

The MDriven Book
Action names

Write the content here to display this box When declaring Actions in MDriven,

you have the option of giving a name (required) and a Presentation (defaults

to). The reason for the two different properties is that the ActionName must

be globally unique for all actions. It is used for the presentation of the action

and as a reference name of the action. The presentation is, however, the text

we use when presenting the action in a contextmenu or in the MDriven

Prototype left-side action column. Since the Presentation often resembles the

Name, we have introduced the following shorthand/activecontent: {|

class="wikitable" |ActionName |Presentation value |Presentation result |-

|Somename | |Somename |- |SomeName | |Some Name |- |SomeName |Extra1

Extra2 |Extra1 Some Name Extra 2 |- |SomeName | |“DefaultStringRep of

context object” |- |SomeName | |Some Name “DefaultStringRep of context

object” |- |SomeName | |“Value of attribute1 of context object” |- |SomeName

|Extra1 Extra2 Extra3 |Extra1 Some Name Extra 2 “Value of attribute1 of

context object” Extra 3 |} The context object is of course the object that the

actions are acting on. So it is intended to be used with “Class actions”.

Constraints descriptions As we introduced the above-mentioned shorthand,

we also made the part available in the constraints Description texts. This way

your constraints descriptions can get context info. If you have the need for a

complex expression, like navigation for pulling attributes from neighbor

classes, you are advised to create the expression as a derived attribute that

you then can reference from your constraint description text. The MDriven

Book - Next Chapter: Microsoft office and OpenDocument as a Report

generator

Page 57

The MDriven Book
Constraints descriptions

Write the content here to display this box When declaring Actions in MDriven,

you have the option of giving a name (required) and a Presentation (defaults

to). The reason for the two different properties is that the ActionName must

be globally unique for all actions. It is used for the presentation of the action

and as a reference name of the action. The presentation is, however, the text

we use when presenting the action in a contextmenu or in the MDriven

Prototype left-side action column. Since the Presentation often resembles the

Name, we have introduced the following shorthand/activecontent: {|

class="wikitable" |ActionName |Presentation value |Presentation result |-

|Somename | |Somename |- |SomeName | |Some Name |- |SomeName |Extra1

Extra2 |Extra1 Some Name Extra 2 |- |SomeName | |“DefaultStringRep of

context object” |- |SomeName | |Some Name “DefaultStringRep of context

object” |- |SomeName | |“Value of attribute1 of context object” |- |SomeName

|Extra1 Extra2 Extra3 |Extra1 Some Name Extra 2 “Value of attribute1 of

context object” Extra 3 |} The context object is of course the object that the

actions are acting on. So it is intended to be used with “Class actions”.

Constraints descriptions As we introduced the above-mentioned shorthand,

we also made the part available in the constraints Description texts. This way

your constraints descriptions can get context info. If you have the need for a

complex expression, like navigation for pulling attributes from neighbor

classes, you are advised to create the expression as a derived attribute that

you then can reference from your constraint description text. The MDriven

Book - Next Chapter: Microsoft office and OpenDocument as a Report

generator

Page 58

The MDriven Book

Microsoft Office and OpenDocument as a Report generator

Page 59

The MDriven Book
A bit hasty and vague

Write the content here to display this box Update: 2024.07.01 Generate

Reports Using OpenDocument and Microsoft Office OpenDocument format is

an open file format standard for office applications compatible with Microsoft

Office and open source applications like LibreOffice and OpenOffice. Common

filename extensions used for OpenDocument documents are: * .odt for text

documents * .ods for spreadsheet documents MDriven applications allow

generating reports from model-driven data using OpenDocument format. Text

Document 1. Start by creating an OpenDocument text document using any

Office application that supports OpenDocument format. 2. Add %meta% tag

within the document as this will be used to print out all the available tags

within your ViewModel for printing out model data. NOTE: Make sure to write

tags without spaces between the word (meta) and the percentage (%) signs.

Saving Strategies a) Temporary Location : (i) Create a folder named temp in

your C:/ directory and save your file in the directory as mytemplate.odt. : (ii)

Your url path will now be 'c:\\temp\\mytemplate.odt'. b) Permanent Location

(AssetsTK Strategy) : (i) This strategy allows your template document to be

uploaded with your model onto the server running your Turnkey application

during deployment. : (ii) Go to the location where your .modlr file is saved. :

(iii) Create a folder with the name in the format of _AssetsTK where is the

name of your .modlr file name. : (iv) Within the folder create another folder

named content where your save your template document. : (v) Your url path

will now be 'http://localhost:8182/content/mytemplate.odt' : (vi) Check here

on how to have a dynamic url for when your deploy your application onto the

Mdriven Server. 3. Create a ViewModel with the Name

Page 60

The MDriven Book
OpenDocumentReportTemplate. This ViewModel will be used as a template

for the Model-Driven data to generate reports. 4. Within the ViewModel

context menu, click Add column > Add columns needed for your report or

create columns TemplateUrl and ReportFileName within the ViewModel. 5.

Select the ViewModel to view the settings on the right. Uncheck the Use

placing hints section at the top. 6. In the TemplateUrl column expression,

enter the url path created earlier using any of the saving strategies above. In

the ReportFileName column expression, enter a file name for the new

OpenDocument that will be generated in the format '.odt' where is the name

of your file. Create a class action within the ViewModel whose data you want

to print out using the expression below:

self.opendocumentreportshow(.ViewModels.OpenDocumentReportTemplate)

where is the root class of the ViewModel. Within

OpenDocumentReportTemplate, add columns whose data you want to print

out. Trigger print out using the created class action. The first print out will

return all tags available for printing out data. Use these tags to format the

structure of your report document. If you don't want to use the %meta% tag

to print out the available tags first, you may use the column names directly

with the same expression %%. To print out nested ViewModel data in a table

format, create a table and add the expression in the following format: {|

class="wikitable" |%%+%%% |%% |%% |} ViewModel Template for Printing

Out Text Open Document

{{image:viewmodel-template-for-text-document.png|alt=ViewModel

Template for Printing out Model-Driven data to OpenDocument

reports|none|thumb|539x539px}} Text Document Template Located at

_AssetsTK/Content/mytemplate.odt and accessible at

Page 61

The MDriven Book
http://localhost:8182/content/mytemplate.odt

{{image:open-document-text-template.png|alt=Office Text Document for

Printing out model-driven data using OpenDocument

format|none|thumb|538x538px}} The table format is for both text documents

and spreadsheet documents. When using Microsoft Office Word,

[https://support.microsoft.com/en-us/office/differences-between-the-opendoc

ument-text-odt-format-and-the-word-docx-format-d9d51a92-56d1-4794-8b68-

5efb57aebfdc check here] for format styling that is supported in

OpenDocument format. Spread Sheet Document 1. Start by creating an

OpenDocument spread sheet document using any Office application that

supports OpenDocument format. 2. Add %meta% tag within the document as

this will be used to print out all the available tags within our ViewModel for

printing out model data or use the column names directly with the same

expression %% where represents the column name in the ViewModel. 3. Use

.ods extension for spread sheet documents and your url path will now be

'http://localhost:8182/content/mytemplate.ods'. ViewModel Template for

Printing Out Spread Sheet Open Document

{{image:viewmodel-template-for-spreadsheet-open-document.png|alt=Sprea

d Sheet Document ViewModel Template|none|thumb|596x596px}}Adding

_float at the end of a column name ensures that the output in Excel is

processed as a number. Spread Sheet Template Located at

_AssetsTK/Content/mytemplate.ods and accessible at

http://localhost:8182/content/mytemplate.ods

{{image:spreadsheet-document-template.png|alt=Spread Sheet Document

Template|none|thumb|594x594px}} Sample Spread Sheet Output

{{image:spreadsheet-sample-output.png|alt=SpreadSheet Sample

Page 62

The MDriven Book
Output|none|thumb|593x593px}} Other Pages On Printing Out Documents: *

OpenDocument * HtmlReport * Use LibreOffice for PDF conversion Older

Information - 2018.04.01 Because we thought it would be great if we could

generate Word and Excel documents straight from model-driven data, we

made it happen. This article explains how to do it. Create a Word template:

{{image:Reporting.png|frameless|408x408px}} You can have grids in grids

to create structure: {{image:Reporting 1.png|frameless|424x424px}} Save

this as an open document file (odt). Save it to a place where you can access it

from a URL (maybe you use SharePoint, or just stick it on some website). Now

you need data. Declare a ViewModel in Modlr: {{image:Reporting

2.png|frameless|411x411px}} (By now, you know that a ViewModel

transforms your model for a specific need – in this case, the OpenDocument

Report.) {{image:Reporting 3.png|frameless|384x384px}} Create two extra

ViewModelColumns in your ViewModel - TemplateUrl and ReportFileName:

{{image:Reporting 4.png|frameless|444x444px}} Make the TemplateUrl

column return the URL to where your template from above can be found –

maybe in some SharePoint instances, as in this example. Make the

ReportFileName column return what the file should be called when produced.

And you are done. Execute the report by using the new EAL operator:

vSomePumpRev.opendocumentreportshow(‘PumpRevDeepReport’) – this will

call the OnOpenDocument event on the new IOpenDocumentService. This

happens when each UI platform has its own way of showing things to a user.

namespace Eco.Services { // Summary: // OpenDocumentService , ViewModel

needs root level column describing url to // template. Column must be

namned "TemplateUrl" and be a valid url to a open // document template

public interface IOpenDocumentService { event EventHandler

Page 63

The MDriven Book
OnOpenDocument; byte[] AsByteArray(IObject vmroot, string

viewModelName, out string reportname); void

ExecuteOnOpenDocument(IObject vmroot, string viewModelName, byte[]

openDocumentData, string reportname); } } In WECPOF for WPF, we do this:

File.WriteAllBytes(suggestedfilename, openDocumentData);

System.Diagnostics.ProcessStartInfo sInfo = new

System.Diagnostics.ProcessStartInfo(suggestedfilename);

System.Diagnostics.Process.Start(sInfo); In ASP.NET, you would do something

else. If you do not want to open the file – generate the data within – then use

the new EAL operator

vSomePumpRev.opendocumentreportasblob(‘PumpRevDeepReport’) A Brief

Recap (A Bit Hasty and Vague) So you might think I just skimmed over stuff –

like: how do you get a hold of the placeholder tags that are replaced with

data? Do this by entering the tag %meta% in your template. We will always

look for this tag – and when found, we will add all valid tags in their places.

How do you create a hierarchical structure in the report? Find it like this in

the data: {{image:Reporting 5.png|frameless|387x387px}} And like this in

the template: {{image:Reporting 6.png|frameless|378x378px}} The tag

%%+Name% acts as a row builder. The following tag %OtherName% is the

data in the child. In the Example: %%+ComponentSpecificationRevs% – I stick

this as the first thing in a table row and the row will be duplicated for each

child. Then the %RevisionNumber% is filled in in the cell. The reporting

mechanism also works for Excel. An example of an Excel result report:

{{image:Reporting 7.png|frameless|339x339px}} Update 2014-03-06.

Qualifications When working with reports, we sometimes do not know in

design time what needs the report will have at runtime. To handle this

Page 64

The MDriven Book
situation, the template tagging has been extended to allow for qualifications.

Let me explain. The smallest possible report sample: {{image:Reporting

8.png|frameless|254x254px}} {{image:Reporting

9.png|frameless|264x264px}} {{image:Reporting

10.png|frameless|376x376px}} We want to allow for picking the correct

Class2 in runtime time while working on the template. If we have this Excel

template: {{image:Reporting 11.png|frameless|279x279px}} We get this

data out: {{image:Reporting 12.png|frameless|268x268px}} The qualification

extension is that we can now have Template tags like this:

%Class2[Name=Hello1]Name% What this means is that we are navigating to

ViewModel column Class2 – but this is a list – and filter the result on the

ViewModel column Name of ViewModelClass Class2. Taking the one with

value “Hello1” – for that Class2 we use the Name column… Example:

{{image:Reporting 13.png|frameless|410x410px}} will give you:

{{image:Reporting 14.png|frameless|410x410px}} (Notice that we have

different external ids in the two last columns – the first from a Class2 with

NameHello1, the other from one with NameHello2) This is useful when you

have data in name-value pair patterns. Update 2014-04-04 -- Images in Word

reports This is how you can do it. Add some placeholder images in the

template: {{image:Reporting 15.png|frameless|375x375px}} On the Image

“Format Picture” – Alt Text property – enter the Tag that holds the image

blob in your ViewModel: {{image:Reporting 16.png|frameless|404x404px}}

Later, in Office(Word), it will look like this: {{image:2022-05-27 17h19

23.png|none|thumb|424x424px}} Now, the image will be replaced with your

data. Also, new today is the fact that the Aspect ratio of your data is kept in

the final Word (odt) report: {{image:Reporting

Page 65

The MDriven Book
17.png|frameless|420x420px}} The MDriven Book - Next Chapter:

Prototyping

Page 66

The MDriven Book
Qualifications

Write the content here to display this box Update: 2024.07.01 Generate

Reports Using OpenDocument and Microsoft Office OpenDocument format is

an open file format standard for office applications compatible with Microsoft

Office and open source applications like LibreOffice and OpenOffice. Common

filename extensions used for OpenDocument documents are: * .odt for text

documents * .ods for spreadsheet documents MDriven applications allow

generating reports from model-driven data using OpenDocument format. Text

Document 1. Start by creating an OpenDocument text document using any

Office application that supports OpenDocument format. 2. Add %meta% tag

within the document as this will be used to print out all the available tags

within your ViewModel for printing out model data. NOTE: Make sure to write

tags without spaces between the word (meta) and the percentage (%) signs.

Saving Strategies a) Temporary Location : (i) Create a folder named temp in

your C:/ directory and save your file in the directory as mytemplate.odt. : (ii)

Your url path will now be 'c:\\temp\\mytemplate.odt'. b) Permanent Location

(AssetsTK Strategy) : (i) This strategy allows your template document to be

uploaded with your model onto the server running your Turnkey application

during deployment. : (ii) Go to the location where your .modlr file is saved. :

(iii) Create a folder with the name in the format of _AssetsTK where is the

name of your .modlr file name. : (iv) Within the folder create another folder

named content where your save your template document. : (v) Your url path

will now be 'http://localhost:8182/content/mytemplate.odt' : (vi) Check here

on how to have a dynamic url for when your deploy your application onto the

Mdriven Server. 3. Create a ViewModel with the Name

Page 67

The MDriven Book
OpenDocumentReportTemplate. This ViewModel will be used as a template

for the Model-Driven data to generate reports. 4. Within the ViewModel

context menu, click Add column > Add columns needed for your report or

create columns TemplateUrl and ReportFileName within the ViewModel. 5.

Select the ViewModel to view the settings on the right. Uncheck the Use

placing hints section at the top. 6. In the TemplateUrl column expression,

enter the url path created earlier using any of the saving strategies above. In

the ReportFileName column expression, enter a file name for the new

OpenDocument that will be generated in the format '.odt' where is the name

of your file. Create a class action within the ViewModel whose data you want

to print out using the expression below:

self.opendocumentreportshow(.ViewModels.OpenDocumentReportTemplate)

where is the root class of the ViewModel. Within

OpenDocumentReportTemplate, add columns whose data you want to print

out. Trigger print out using the created class action. The first print out will

return all tags available for printing out data. Use these tags to format the

structure of your report document. If you don't want to use the %meta% tag

to print out the available tags first, you may use the column names directly

with the same expression %%. To print out nested ViewModel data in a table

format, create a table and add the expression in the following format: {|

class="wikitable" |%%+%%% |%% |%% |} ViewModel Template for Printing

Out Text Open Document

{{image:viewmodel-template-for-text-document.png|alt=ViewModel

Template for Printing out Model-Driven data to OpenDocument

reports|none|thumb|539x539px}} Text Document Template Located at

_AssetsTK/Content/mytemplate.odt and accessible at

Page 68

The MDriven Book
http://localhost:8182/content/mytemplate.odt

{{image:open-document-text-template.png|alt=Office Text Document for

Printing out model-driven data using OpenDocument

format|none|thumb|538x538px}} The table format is for both text documents

and spreadsheet documents. When using Microsoft Office Word,

[https://support.microsoft.com/en-us/office/differences-between-the-opendoc

ument-text-odt-format-and-the-word-docx-format-d9d51a92-56d1-4794-8b68-

5efb57aebfdc check here] for format styling that is supported in

OpenDocument format. Spread Sheet Document 1. Start by creating an

OpenDocument spread sheet document using any Office application that

supports OpenDocument format. 2. Add %meta% tag within the document as

this will be used to print out all the available tags within our ViewModel for

printing out model data or use the column names directly with the same

expression %% where represents the column name in the ViewModel. 3. Use

.ods extension for spread sheet documents and your url path will now be

'http://localhost:8182/content/mytemplate.ods'. ViewModel Template for

Printing Out Spread Sheet Open Document

{{image:viewmodel-template-for-spreadsheet-open-document.png|alt=Sprea

d Sheet Document ViewModel Template|none|thumb|596x596px}}Adding

_float at the end of a column name ensures that the output in Excel is

processed as a number. Spread Sheet Template Located at

_AssetsTK/Content/mytemplate.ods and accessible at

http://localhost:8182/content/mytemplate.ods

{{image:spreadsheet-document-template.png|alt=Spread Sheet Document

Template|none|thumb|594x594px}} Sample Spread Sheet Output

{{image:spreadsheet-sample-output.png|alt=SpreadSheet Sample

Page 69

The MDriven Book
Output|none|thumb|593x593px}} Other Pages On Printing Out Documents: *

OpenDocument * HtmlReport * Use LibreOffice for PDF conversion Older

Information - 2018.04.01 Because we thought it would be great if we could

generate Word and Excel documents straight from model-driven data, we

made it happen. This article explains how to do it. Create a Word template:

{{image:Reporting.png|frameless|408x408px}} You can have grids in grids

to create structure: {{image:Reporting 1.png|frameless|424x424px}} Save

this as an open document file (odt). Save it to a place where you can access it

from a URL (maybe you use SharePoint, or just stick it on some website). Now

you need data. Declare a ViewModel in Modlr: {{image:Reporting

2.png|frameless|411x411px}} (By now, you know that a ViewModel

transforms your model for a specific need – in this case, the OpenDocument

Report.) {{image:Reporting 3.png|frameless|384x384px}} Create two extra

ViewModelColumns in your ViewModel - TemplateUrl and ReportFileName:

{{image:Reporting 4.png|frameless|444x444px}} Make the TemplateUrl

column return the URL to where your template from above can be found –

maybe in some SharePoint instances, as in this example. Make the

ReportFileName column return what the file should be called when produced.

And you are done. Execute the report by using the new EAL operator:

vSomePumpRev.opendocumentreportshow(‘PumpRevDeepReport’) – this will

call the OnOpenDocument event on the new IOpenDocumentService. This

happens when each UI platform has its own way of showing things to a user.

namespace Eco.Services { // Summary: // OpenDocumentService , ViewModel

needs root level column describing url to // template. Column must be

namned "TemplateUrl" and be a valid url to a open // document template

public interface IOpenDocumentService { event EventHandler

Page 70

The MDriven Book
OnOpenDocument; byte[] AsByteArray(IObject vmroot, string

viewModelName, out string reportname); void

ExecuteOnOpenDocument(IObject vmroot, string viewModelName, byte[]

openDocumentData, string reportname); } } In WECPOF for WPF, we do this:

File.WriteAllBytes(suggestedfilename, openDocumentData);

System.Diagnostics.ProcessStartInfo sInfo = new

System.Diagnostics.ProcessStartInfo(suggestedfilename);

System.Diagnostics.Process.Start(sInfo); In ASP.NET, you would do something

else. If you do not want to open the file – generate the data within – then use

the new EAL operator

vSomePumpRev.opendocumentreportasblob(‘PumpRevDeepReport’) A Brief

Recap (A Bit Hasty and Vague) So you might think I just skimmed over stuff –

like: how do you get a hold of the placeholder tags that are replaced with

data? Do this by entering the tag %meta% in your template. We will always

look for this tag – and when found, we will add all valid tags in their places.

How do you create a hierarchical structure in the report? Find it like this in

the data: {{image:Reporting 5.png|frameless|387x387px}} And like this in

the template: {{image:Reporting 6.png|frameless|378x378px}} The tag

%%+Name% acts as a row builder. The following tag %OtherName% is the

data in the child. In the Example: %%+ComponentSpecificationRevs% – I stick

this as the first thing in a table row and the row will be duplicated for each

child. Then the %RevisionNumber% is filled in in the cell. The reporting

mechanism also works for Excel. An example of an Excel result report:

{{image:Reporting 7.png|frameless|339x339px}} Update 2014-03-06.

Qualifications When working with reports, we sometimes do not know in

design time what needs the report will have at runtime. To handle this

Page 71

The MDriven Book
situation, the template tagging has been extended to allow for qualifications.

Let me explain. The smallest possible report sample: {{image:Reporting

8.png|frameless|254x254px}} {{image:Reporting

9.png|frameless|264x264px}} {{image:Reporting

10.png|frameless|376x376px}} We want to allow for picking the correct

Class2 in runtime time while working on the template. If we have this Excel

template: {{image:Reporting 11.png|frameless|279x279px}} We get this

data out: {{image:Reporting 12.png|frameless|268x268px}} The qualification

extension is that we can now have Template tags like this:

%Class2[Name=Hello1]Name% What this means is that we are navigating to

ViewModel column Class2 – but this is a list – and filter the result on the

ViewModel column Name of ViewModelClass Class2. Taking the one with

value “Hello1” – for that Class2 we use the Name column… Example:

{{image:Reporting 13.png|frameless|410x410px}} will give you:

{{image:Reporting 14.png|frameless|410x410px}} (Notice that we have

different external ids in the two last columns – the first from a Class2 with

NameHello1, the other from one with NameHello2) This is useful when you

have data in name-value pair patterns. Update 2014-04-04 -- Images in Word

reports This is how you can do it. Add some placeholder images in the

template: {{image:Reporting 15.png|frameless|375x375px}} On the Image

“Format Picture” – Alt Text property – enter the Tag that holds the image

blob in your ViewModel: {{image:Reporting 16.png|frameless|404x404px}}

Later, in Office(Word), it will look like this: {{image:2022-05-27 17h19

23.png|none|thumb|424x424px}} Now, the image will be replaced with your

data. Also, new today is the fact that the Aspect ratio of your data is kept in

the final Word (odt) report: {{image:Reporting

Page 72

The MDriven Book
17.png|frameless|420x420px}} The MDriven Book - Next Chapter:

Prototyping

Page 73

The MDriven Book
Images in Word reports

Write the content here to display this box Update: 2024.07.01 Generate

Reports Using OpenDocument and Microsoft Office OpenDocument format is

an open file format standard for office applications compatible with Microsoft

Office and open source applications like LibreOffice and OpenOffice. Common

filename extensions used for OpenDocument documents are: * .odt for text

documents * .ods for spreadsheet documents MDriven applications allow

generating reports from model-driven data using OpenDocument format. Text

Document 1. Start by creating an OpenDocument text document using any

Office application that supports OpenDocument format. 2. Add %meta% tag

within the document as this will be used to print out all the available tags

within your ViewModel for printing out model data. NOTE: Make sure to write

tags without spaces between the word (meta) and the percentage (%) signs.

Saving Strategies a) Temporary Location : (i) Create a folder named temp in

your C:/ directory and save your file in the directory as mytemplate.odt. : (ii)

Your url path will now be 'c:\\temp\\mytemplate.odt'. b) Permanent Location

(AssetsTK Strategy) : (i) This strategy allows your template document to be

uploaded with your model onto the server running your Turnkey application

during deployment. : (ii) Go to the location where your .modlr file is saved. :

(iii) Create a folder with the name in the format of _AssetsTK where is the

name of your .modlr file name. : (iv) Within the folder create another folder

named content where your save your template document. : (v) Your url path

will now be 'http://localhost:8182/content/mytemplate.odt' : (vi) Check here

on how to have a dynamic url for when your deploy your application onto the

Mdriven Server. 3. Create a ViewModel with the Name

Page 74

The MDriven Book
OpenDocumentReportTemplate. This ViewModel will be used as a template

for the Model-Driven data to generate reports. 4. Within the ViewModel

context menu, click Add column > Add columns needed for your report or

create columns TemplateUrl and ReportFileName within the ViewModel. 5.

Select the ViewModel to view the settings on the right. Uncheck the Use

placing hints section at the top. 6. In the TemplateUrl column expression,

enter the url path created earlier using any of the saving strategies above. In

the ReportFileName column expression, enter a file name for the new

OpenDocument that will be generated in the format '.odt' where is the name

of your file. Create a class action within the ViewModel whose data you want

to print out using the expression below:

self.opendocumentreportshow(.ViewModels.OpenDocumentReportTemplate)

where is the root class of the ViewModel. Within

OpenDocumentReportTemplate, add columns whose data you want to print

out. Trigger print out using the created class action. The first print out will

return all tags available for printing out data. Use these tags to format the

structure of your report document. If you don't want to use the %meta% tag

to print out the available tags first, you may use the column names directly

with the same expression %%. To print out nested ViewModel data in a table

format, create a table and add the expression in the following format: {|

class="wikitable" |%%+%%% |%% |%% |} ViewModel Template for Printing

Out Text Open Document

{{image:viewmodel-template-for-text-document.png|alt=ViewModel

Template for Printing out Model-Driven data to OpenDocument

reports|none|thumb|539x539px}} Text Document Template Located at

_AssetsTK/Content/mytemplate.odt and accessible at

Page 75

The MDriven Book
http://localhost:8182/content/mytemplate.odt

{{image:open-document-text-template.png|alt=Office Text Document for

Printing out model-driven data using OpenDocument

format|none|thumb|538x538px}} The table format is for both text documents

and spreadsheet documents. When using Microsoft Office Word,

[https://support.microsoft.com/en-us/office/differences-between-the-opendoc

ument-text-odt-format-and-the-word-docx-format-d9d51a92-56d1-4794-8b68-

5efb57aebfdc check here] for format styling that is supported in

OpenDocument format. Spread Sheet Document 1. Start by creating an

OpenDocument spread sheet document using any Office application that

supports OpenDocument format. 2. Add %meta% tag within the document as

this will be used to print out all the available tags within our ViewModel for

printing out model data or use the column names directly with the same

expression %% where represents the column name in the ViewModel. 3. Use

.ods extension for spread sheet documents and your url path will now be

'http://localhost:8182/content/mytemplate.ods'. ViewModel Template for

Printing Out Spread Sheet Open Document

{{image:viewmodel-template-for-spreadsheet-open-document.png|alt=Sprea

d Sheet Document ViewModel Template|none|thumb|596x596px}}Adding

_float at the end of a column name ensures that the output in Excel is

processed as a number. Spread Sheet Template Located at

_AssetsTK/Content/mytemplate.ods and accessible at

http://localhost:8182/content/mytemplate.ods

{{image:spreadsheet-document-template.png|alt=Spread Sheet Document

Template|none|thumb|594x594px}} Sample Spread Sheet Output

{{image:spreadsheet-sample-output.png|alt=SpreadSheet Sample

Page 76

The MDriven Book
Output|none|thumb|593x593px}} Other Pages On Printing Out Documents: *

OpenDocument * HtmlReport * Use LibreOffice for PDF conversion Older

Information - 2018.04.01 Because we thought it would be great if we could

generate Word and Excel documents straight from model-driven data, we

made it happen. This article explains how to do it. Create a Word template:

{{image:Reporting.png|frameless|408x408px}} You can have grids in grids

to create structure: {{image:Reporting 1.png|frameless|424x424px}} Save

this as an open document file (odt). Save it to a place where you can access it

from a URL (maybe you use SharePoint, or just stick it on some website). Now

you need data. Declare a ViewModel in Modlr: {{image:Reporting

2.png|frameless|411x411px}} (By now, you know that a ViewModel

transforms your model for a specific need – in this case, the OpenDocument

Report.) {{image:Reporting 3.png|frameless|384x384px}} Create two extra

ViewModelColumns in your ViewModel - TemplateUrl and ReportFileName:

{{image:Reporting 4.png|frameless|444x444px}} Make the TemplateUrl

column return the URL to where your template from above can be found –

maybe in some SharePoint instances, as in this example. Make the

ReportFileName column return what the file should be called when produced.

And you are done. Execute the report by using the new EAL operator:

vSomePumpRev.opendocumentreportshow(‘PumpRevDeepReport’) – this will

call the OnOpenDocument event on the new IOpenDocumentService. This

happens when each UI platform has its own way of showing things to a user.

namespace Eco.Services { // Summary: // OpenDocumentService , ViewModel

needs root level column describing url to // template. Column must be

namned "TemplateUrl" and be a valid url to a open // document template

public interface IOpenDocumentService { event EventHandler

Page 77

The MDriven Book
OnOpenDocument; byte[] AsByteArray(IObject vmroot, string

viewModelName, out string reportname); void

ExecuteOnOpenDocument(IObject vmroot, string viewModelName, byte[]

openDocumentData, string reportname); } } In WECPOF for WPF, we do this:

File.WriteAllBytes(suggestedfilename, openDocumentData);

System.Diagnostics.ProcessStartInfo sInfo = new

System.Diagnostics.ProcessStartInfo(suggestedfilename);

System.Diagnostics.Process.Start(sInfo); In ASP.NET, you would do something

else. If you do not want to open the file – generate the data within – then use

the new EAL operator

vSomePumpRev.opendocumentreportasblob(‘PumpRevDeepReport’) A Brief

Recap (A Bit Hasty and Vague) So you might think I just skimmed over stuff –

like: how do you get a hold of the placeholder tags that are replaced with

data? Do this by entering the tag %meta% in your template. We will always

look for this tag – and when found, we will add all valid tags in their places.

How do you create a hierarchical structure in the report? Find it like this in

the data: {{image:Reporting 5.png|frameless|387x387px}} And like this in

the template: {{image:Reporting 6.png|frameless|378x378px}} The tag

%%+Name% acts as a row builder. The following tag %OtherName% is the

data in the child. In the Example: %%+ComponentSpecificationRevs% – I stick

this as the first thing in a table row and the row will be duplicated for each

child. Then the %RevisionNumber% is filled in in the cell. The reporting

mechanism also works for Excel. An example of an Excel result report:

{{image:Reporting 7.png|frameless|339x339px}} Update 2014-03-06.

Qualifications When working with reports, we sometimes do not know in

design time what needs the report will have at runtime. To handle this

Page 78

The MDriven Book
situation, the template tagging has been extended to allow for qualifications.

Let me explain. The smallest possible report sample: {{image:Reporting

8.png|frameless|254x254px}} {{image:Reporting

9.png|frameless|264x264px}} {{image:Reporting

10.png|frameless|376x376px}} We want to allow for picking the correct

Class2 in runtime time while working on the template. If we have this Excel

template: {{image:Reporting 11.png|frameless|279x279px}} We get this

data out: {{image:Reporting 12.png|frameless|268x268px}} The qualification

extension is that we can now have Template tags like this:

%Class2[Name=Hello1]Name% What this means is that we are navigating to

ViewModel column Class2 – but this is a list – and filter the result on the

ViewModel column Name of ViewModelClass Class2. Taking the one with

value “Hello1” – for that Class2 we use the Name column… Example:

{{image:Reporting 13.png|frameless|410x410px}} will give you:

{{image:Reporting 14.png|frameless|410x410px}} (Notice that we have

different external ids in the two last columns – the first from a Class2 with

NameHello1, the other from one with NameHello2) This is useful when you

have data in name-value pair patterns. Update 2014-04-04 -- Images in Word

reports This is how you can do it. Add some placeholder images in the

template: {{image:Reporting 15.png|frameless|375x375px}} On the Image

“Format Picture” – Alt Text property – enter the Tag that holds the image

blob in your ViewModel: {{image:Reporting 16.png|frameless|404x404px}}

Later, in Office(Word), it will look like this: {{image:2022-05-27 17h19

23.png|none|thumb|424x424px}} Now, the image will be replaced with your

data. Also, new today is the fact that the Aspect ratio of your data is kept in

the final Word (odt) report: {{image:Reporting

Page 79

The MDriven Book
17.png|frameless|420x420px}} The MDriven Book - Next Chapter:

Prototyping

Page 80

The MDriven Book

Prototyping

Page 81

The MDriven Book
This is how you do Prototyping with MDriven

Write the content here to display this box Used in all lines of engineering,

prototyping is the process of whipping something together quickly as a

mock-up to show or test to learn something that otherwise would be hard to

know. Prototyping for software has a unique position. The prototype is

composed of the same elements as the finished product: logical rules. This is

untrue for any other practice of engineering. We have a unique position

where we can harvest to make the real deal – the finished product – just as

easily as if we were building a prototype. Many experienced developers frown

at this. They know how prudent you must be to build something robust and

solid. They also know how quick and dirty the prototype is when you're

putting it together. Why does this huge gap exist? My answer: normal coding

leaves too many degrees of freedom for the task at hand. Normal coding uses

only one tool – code – for handling, presenting, and navigating data. In

addition, you will mix things up when you are in a hurry. If we can separate

things like the information we handle, from the transformation of that

information into views and from the navigation between these views – then

we have something that will almost fly on its own – and building something

will be like prototyping it. Think of it as an autopilot; it will protect you

against making stupid mistakes, help you fly straight, and give you time to

talk on the radio or more – you only need to tell it where you want to fly. With

MDriven, we use the model to tell the autopilot what information to handle,

what the perspectives of the information should be, and how to navigate

between the views of information. Having instructed the autopilot, we can

take off and see if we have the right model or not. If not, we churn away and

Page 82

The MDriven Book
fix it. Many developers also frown at the idea of autopilot since it will

emasculate them and stop them from flexing their muscles. I need to point

out that what makes MDrivenFramework great is that you can turn off the

autopilot for any portion of the flight so to speak. You can still do some cool

looping in front of a gaping audience whenever you feel like it, before turning

on autopilot to do the mundane flight back home. This will give you freedom,

speed, and fewer accidents. This is How You Do It With MDriven 1. Model

what you know so far. In the example below, I am prototyping for a Car Rental

Service. {{image:Prototyping - 1.png|none|frame|527x527px}} 2. Think

about what user stories or requirements you have:As a Customer, I want to

see what cars you can rent.'As a Customer, I want to know what they cost per

day and what my total cost will be.'As a Rental worker, I want to be able to

hand customers rental contracts to sign.As a Rental worker, I want to be able

to find free cars.3. Then, create some ViewModels that can cover these user

stories. When prototyping, make use of the scaffolding user interface hints

that place out UI controls on a screen surface that matches the types of the

Viewmodels properties. I end up with 4 ViewModels:Search for a Car:

{{image:Prototyping - 2.png|none|frame|478x478px}} Search for a

Customer:{{image:Prototyping - 3.png|none|frame|479x479px}} View or edit

a customer: {{image:Prototyping - 5.png|none|frame|483x483px}} View or

edit a Rental contract: {{image:Prototyping - 6.png|none|frame|485x485px}}

4. What actions do we need to expose to the user for navigation between

these views? For this, start by clicking Create/Init standard actions in the

ActionsDefinition dialog. This gives you ordinary actions like save, quit, undo,

and redo. It also picks up on the ViewModels you have and adds some actions

for them. {{image:Prototyping - 7.png|none|frame|481x481px}} Remove the

Page 83

The MDriven Book
actions created for ViewAndEditCustomer and ViewAndEditRentalContract

since these are rooted views that require a root object (a customer or a

Rental contract) to have something to show. Instead, add a ViewModelActions

in the SearchForCustomer ViewModel that creates a new Customer and one

that creates new rental contracts: {{image:Prototyping -

8.png|none|frame|473x473px}} Also, add class actions that can show an

existing customer and rental contract: {{image:Prototyping -

9.png|none|frame|478x478px}} 6. I could think a bit harder, but the whole

point with prototyping is that it should be easy to test if we are done or not.

So I hit the start prototype symbol: {{image:Prototyping -

10.png|none|frame|482x482px}} I am presented with a choice of how to store

data for this prototype. We will choose XML for starters: {{image:Prototyping

- 11.png|none|frame|408x408px}} I start the prototype and find the main

menu items: {{image:Prototyping - 12.png|none|frame}} I pick “Search for

customers” and I search. When the system finds none, I click the action new

customer and I get the ViewAndEditCustomer view. I enter a name and save

and click 'back'. Now, the search result sees a customer: {{image:Prototyping

- 13.png|none|frame}} Note to self: I must have a Search for rental contracts.

I create a new rental contract and notice that the button “Assign customer”

does nothing. Note to self: I must bring up “Search for Customer" on "Assign

Customer" and let the user pick 1 customer to return back with and set them

on the "rental contract”. Note to self: I must do the same for "Assign Car" and

bring up "Search for cars". Note to self: I do not have any data for cars or

brands and no UI to enter it with. Note to self: I should do this in the

debugger window for now. This is how a typical prototyping session goes and

how it reveals the obvious things we need to do. Let's do them now. Start

Page 84

The MDriven Book
with using the debugger for adding cars and brands: {{image:Prototyping -

14.png|none|frame|457x457px}} I add a brand as well then save the data to

the prototyping XML file by switching to dirty objects: {{image:Prototyping -

15.png|none|frame|472x472px}} I click to open the Autoform of a Car-object.

I drag a Brand object to the Brand field: {{image:Prototyping -

16.png|none|frame|533x533px}} That takes care of test data for Cars and

Brands. I still have these two items: Note to self: I must bring up “search for

customer" on "assign customer" – then let the user pick 1 customer to return

back with and set on the "rental contract”. Note to self: I must do the same

for "assign car" – I must bring up "search for cars". I do this by adding a

ViewModelAction for the ViewOrEditRentalContract: {{image:Prototyping -

17.png|none|frame|444x444px}} The Action should bring up the search for

Customer. It should be a modal action and be fine to press "ok" once a

Customer is selected. When Ok is executed, we assign the picked customer to

our rental contract. The same more or less for picking a car:

{{image:Prototyping - 18.png|none|frame|425x425px}} I choose to hook

these actions up to the buttons I put in the ViewModel: {{image:Prototyping -

19.png|none|frame|439x439px}} I also have this one left: Note to self: I must

have a Search for rental contracts. Yet another ViewModel. Once I have it

done, I use the shortcut action to create a global action to show it:

{{image:Prototyping - 20.png|none|frame|438x438px}} Then I press Play

again: This time, I can assign a Customer and assign a Car. The search for Car

comes up with an Ok/Cancel button because it was brought up by a modal

action: {{image:Prototyping - 21.png|none|frame|431x431px}} I search, pick

a car, and press ok: {{image:Prototyping - 22.png|none|frame|460x460px}} I

still have a few user stories left. I will need to change the model somewhat,

Page 85

The MDriven Book
amend the ViewModels a bit, and maybe create some actions. All in all, this is

a very straightforward way to work. You get instant gratification when you

see your model and logic come to life. This is something that will also trigger

ideas for further things your users will need or want. Churn on like this for an

hour or two and you will have done more than what you would do in a day

with traditional specification work or coding. The Look The prototyper window

uses Windows Presentation Foundation (WPF). You are free to change the

used style sheet as you see fit: {{image:Prototyping -

23.png|none|frame|488x488px}} Or: {{image:Prototyping -

24.png|none|frame|493x493px}} Or maybe you need to stress that you are

“just prototyping” by using something really bubbly: {{image:Prototyping -

25.png|none|frame|501x501px}}The MDriven Book - Next Chapter: Available

Actions

Page 86

The MDriven Book
The look

Write the content here to display this box Used in all lines of engineering,

prototyping is the process of whipping something together quickly as a

mock-up to show or test to learn something that otherwise would be hard to

know. Prototyping for software has a unique position. The prototype is

composed of the same elements as the finished product: logical rules. This is

untrue for any other practice of engineering. We have a unique position

where we can harvest to make the real deal – the finished product – just as

easily as if we were building a prototype. Many experienced developers frown

at this. They know how prudent you must be to build something robust and

solid. They also know how quick and dirty the prototype is when you're

putting it together. Why does this huge gap exist? My answer: normal coding

leaves too many degrees of freedom for the task at hand. Normal coding uses

only one tool – code – for handling, presenting, and navigating data. In

addition, you will mix things up when you are in a hurry. If we can separate

things like the information we handle, from the transformation of that

information into views and from the navigation between these views – then

we have something that will almost fly on its own – and building something

will be like prototyping it. Think of it as an autopilot; it will protect you

against making stupid mistakes, help you fly straight, and give you time to

talk on the radio or more – you only need to tell it where you want to fly. With

MDriven, we use the model to tell the autopilot what information to handle,

what the perspectives of the information should be, and how to navigate

between the views of information. Having instructed the autopilot, we can

take off and see if we have the right model or not. If not, we churn away and

Page 87

The MDriven Book
fix it. Many developers also frown at the idea of autopilot since it will

emasculate them and stop them from flexing their muscles. I need to point

out that what makes MDrivenFramework great is that you can turn off the

autopilot for any portion of the flight so to speak. You can still do some cool

looping in front of a gaping audience whenever you feel like it, before turning

on autopilot to do the mundane flight back home. This will give you freedom,

speed, and fewer accidents. This is How You Do It With MDriven 1. Model

what you know so far. In the example below, I am prototyping for a Car Rental

Service. {{image:Prototyping - 1.png|none|frame|527x527px}} 2. Think

about what user stories or requirements you have:As a Customer, I want to

see what cars you can rent.'As a Customer, I want to know what they cost per

day and what my total cost will be.'As a Rental worker, I want to be able to

hand customers rental contracts to sign.As a Rental worker, I want to be able

to find free cars.3. Then, create some ViewModels that can cover these user

stories. When prototyping, make use of the scaffolding user interface hints

that place out UI controls on a screen surface that matches the types of the

Viewmodels properties. I end up with 4 ViewModels:Search for a Car:

{{image:Prototyping - 2.png|none|frame|478x478px}} Search for a

Customer:{{image:Prototyping - 3.png|none|frame|479x479px}} View or edit

a customer: {{image:Prototyping - 5.png|none|frame|483x483px}} View or

edit a Rental contract: {{image:Prototyping - 6.png|none|frame|485x485px}}

4. What actions do we need to expose to the user for navigation between

these views? For this, start by clicking Create/Init standard actions in the

ActionsDefinition dialog. This gives you ordinary actions like save, quit, undo,

and redo. It also picks up on the ViewModels you have and adds some actions

for them. {{image:Prototyping - 7.png|none|frame|481x481px}} Remove the

Page 88

The MDriven Book
actions created for ViewAndEditCustomer and ViewAndEditRentalContract

since these are rooted views that require a root object (a customer or a

Rental contract) to have something to show. Instead, add a ViewModelActions

in the SearchForCustomer ViewModel that creates a new Customer and one

that creates new rental contracts: {{image:Prototyping -

8.png|none|frame|473x473px}} Also, add class actions that can show an

existing customer and rental contract: {{image:Prototyping -

9.png|none|frame|478x478px}} 6. I could think a bit harder, but the whole

point with prototyping is that it should be easy to test if we are done or not.

So I hit the start prototype symbol: {{image:Prototyping -

10.png|none|frame|482x482px}} I am presented with a choice of how to store

data for this prototype. We will choose XML for starters: {{image:Prototyping

- 11.png|none|frame|408x408px}} I start the prototype and find the main

menu items: {{image:Prototyping - 12.png|none|frame}} I pick “Search for

customers” and I search. When the system finds none, I click the action new

customer and I get the ViewAndEditCustomer view. I enter a name and save

and click 'back'. Now, the search result sees a customer: {{image:Prototyping

- 13.png|none|frame}} Note to self: I must have a Search for rental contracts.

I create a new rental contract and notice that the button “Assign customer”

does nothing. Note to self: I must bring up “Search for Customer" on "Assign

Customer" and let the user pick 1 customer to return back with and set them

on the "rental contract”. Note to self: I must do the same for "Assign Car" and

bring up "Search for cars". Note to self: I do not have any data for cars or

brands and no UI to enter it with. Note to self: I should do this in the

debugger window for now. This is how a typical prototyping session goes and

how it reveals the obvious things we need to do. Let's do them now. Start

Page 89

The MDriven Book
with using the debugger for adding cars and brands: {{image:Prototyping -

14.png|none|frame|457x457px}} I add a brand as well then save the data to

the prototyping XML file by switching to dirty objects: {{image:Prototyping -

15.png|none|frame|472x472px}} I click to open the Autoform of a Car-object.

I drag a Brand object to the Brand field: {{image:Prototyping -

16.png|none|frame|533x533px}} That takes care of test data for Cars and

Brands. I still have these two items: Note to self: I must bring up “search for

customer" on "assign customer" – then let the user pick 1 customer to return

back with and set on the "rental contract”. Note to self: I must do the same

for "assign car" – I must bring up "search for cars". I do this by adding a

ViewModelAction for the ViewOrEditRentalContract: {{image:Prototyping -

17.png|none|frame|444x444px}} The Action should bring up the search for

Customer. It should be a modal action and be fine to press "ok" once a

Customer is selected. When Ok is executed, we assign the picked customer to

our rental contract. The same more or less for picking a car:

{{image:Prototyping - 18.png|none|frame|425x425px}} I choose to hook

these actions up to the buttons I put in the ViewModel: {{image:Prototyping -

19.png|none|frame|439x439px}} I also have this one left: Note to self: I must

have a Search for rental contracts. Yet another ViewModel. Once I have it

done, I use the shortcut action to create a global action to show it:

{{image:Prototyping - 20.png|none|frame|438x438px}} Then I press Play

again: This time, I can assign a Customer and assign a Car. The search for Car

comes up with an Ok/Cancel button because it was brought up by a modal

action: {{image:Prototyping - 21.png|none|frame|431x431px}} I search, pick

a car, and press ok: {{image:Prototyping - 22.png|none|frame|460x460px}} I

still have a few user stories left. I will need to change the model somewhat,

Page 90

The MDriven Book
amend the ViewModels a bit, and maybe create some actions. All in all, this is

a very straightforward way to work. You get instant gratification when you

see your model and logic come to life. This is something that will also trigger

ideas for further things your users will need or want. Churn on like this for an

hour or two and you will have done more than what you would do in a day

with traditional specification work or coding. The Look The prototyper window

uses Windows Presentation Foundation (WPF). You are free to change the

used style sheet as you see fit: {{image:Prototyping -

23.png|none|frame|488x488px}} Or: {{image:Prototyping -

24.png|none|frame|493x493px}} Or maybe you need to stress that you are

“just prototyping” by using something really bubbly: {{image:Prototyping -

25.png|none|frame|501x501px}}The MDriven Book - Next Chapter: Available

Actions

Page 91

The MDriven Book
Available Actions

Write the content here to display this box The actions shown to the left in the

image below are calculated by the Framework. You can have class actions –

actions associated with a class in your model. These will show up whenever

an object of that class is shown in your view. * You can also have ViewModel

actions and these only show up in the view they are defined for. * You have

the ability to instruct the logic to make exceptions for the calculated display

of actions. You can opt out of the presentation of actions per view. * Actions

may be used for navigation, but they may also perform something – like

calling a method on an object. In our example, we already have some actions

– both ViewModel actions, Class actions, and Global actions (the ones that

build up the main menu).{{image:Prototyping -

26.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_26.png}}Look closely at the ShowRentalContract action. This is a Class

action – available everywhere a RentalContract is shown. However, there are

situations where we do not want it to show – like when we already are in the

view that is brought up by the action:{{image:Prototyping -

27.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_27.png}}To remove it, we want to opt out. There are two tools in

MDrivenDesigner that are good to use for this. The first one is the

ViewModelEditor:{{image:Prototyping -

28.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_28.png}}Pressing the “>” button will move it to the opt out

column:{{image:Prototyping -

29.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

Page 92

The MDriven Book
_29.png}}You can press the “<” to opt in again. The other place you can opt

out of actions from is the Action Cross Reference

window:{{image:Prototyping -

30.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_30.png}}{{image:Prototyping -

31.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_31.png}}In this window, we see the actions that will bring this view up.

Currently, there are 2 actions: the NewRentalContract and the

ShowRentalContract. We also see the actions that will show and a line to

which section or nesting of the ViewModel it refers. You may click the lines

and shift them from green (opt in default) to opt out. Since we already opted

out of our ShowRentalContract from this view, that line is already red. There

are also tools for looking at this from a specific action perspective. In the

ActionsEditor, we see this for the ShowRentalContract

Action:{{image:Prototyping -

32.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_32.png}}It says “Action shows in 2 places. 1 Opted out” followed by a dialog

button. Click that and you will see this:{{image:Prototyping -

33.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_33.png}}Here we see that it is opt out in the ViewAndEditRentalContract

view, but it shows 2 times in the SearchForRentalContracts view. I switch

back to prototyping to verify this:{{image:Prototyping -

34.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_34.png}}And find that this is true. The reason for this is the fact that this

ViewModel defines two areas that have the type RentalContract: one for the

root and one for the Grid-nesting that shows the results from the variable

Page 93

The MDriven Book
vSeekerResult.{{image:Prototyping -

35.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_35.png}}The root instance will always be null since this ViewModel does not

require a root object to function. ViewModels designed for seeking seldom do.

If it always will be null then there is little point in having an action that will

be enabled only if it is assigned to an object. We should opt that root action

out. Click the line to toggle the opt out state:{{image:Prototyping -

36.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_36.png}}The ActionEditor was updated as well:{{image:Prototyping -

37.png|none|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-

_37.png}}It now says the Action shows in 1 place – 2 opted out. I have had

my prototyping session running all along – but it still uses the model we had

prior to our changes. I can now restart the prototyping by clicking Play again,

bringing up a new prototype window. Or I can just reread the model to the

one I have. I see that the ShowRentalContract action is shown only

once.{{image:Prototyping -

38.png|frame|link=https://wiki.mdriven.net/index.php/File:Prototyping_-_38.p

ng|none}}If you are alone for a day and you have lots of ideas, I assure you

that you can model them in MDriven Designer and verify them in MDriven

Prototyper. When you are able to try and verify ideas rapidly, you will find

many “think bugs” early. Bugs that make you say things like: “Oh, no – that

is not a good way of doing it!”. Since the MDriven environment works as your

autopilot and it has tens of thousands of flight hours under its belt, you will

be freer in the creative part of your work. The MDriven Book - Next Chapter:

MDriven Server Introduction

Page 94

The MDriven Book
Introducing MDriven Server

Page 95

The MDriven Book
Security concerns for MDriven Server

Write the content here to display this box When you install your MDriven

Server, access it by registering a new user. There are more things to

consider, however. To secure your model and data and system, you can: #

Make sure you communicate with MDriven Server over HTTPS so that no one

sees your passwords and other data that will go over the wire. # Limit what

an unauthenticated user of MDriven Server can do. {{image:MDriven security

01.png|frameless|252x252px}} ☛ {{image:MDriven security

02.png|frameless|363x363px}} {{image:MDriven security

03.png|frameless}} ☛ {{image:MDriven security

04.png|frameless|422x422px}} In the user admin dialog, state that the Admin

UI requires identification. If you do this – and you should at some point –

make sure you make yourself SuperAdmin so you do not lock yourself out.

You can also state whether the services exposed by the MDriven Server via

various web interfaces require authentication or not. You will likely begin

with a relaxed attitude to security - this will put fewer requirements on the

users you engage in prototyping etc. Understand that no security limitations

are enforced as long as you run your server in HTTP mode – because this

would force us to send passwords over an open wire which is considered

unsafe since it may implicate other services you have. The MDriven Book -

Next Chapter: MDrivenServer Summarized {{Edited|July|12|2024}}

Page 96

The MDriven Book
MDrivenServer Summarized

Write the content here to display this box The MDrivenServer receives your

model from MDrivenDesigner. As it does, it will create or evolve the database

it uses to store your data. This database is default a SQLServer Compact

edition that gets installed along the MDrivenServer. You can however change

the database used for your data to a SQLServer in Azure. You change the

database used simply by providing a connection string like this:

{{image:MDrivenServerSummarized.png|none|thumb|696x696px}} The

MDriven Server allows you to access the data in your database through

various interfaces. The most advanced interface is the MDriven Framework

PersistenceMapper API. This API is easily used with MDriven Framework-built

applications. The MDriven Frameworks PersistenceMapper API is a secure and

robust way to query and retrieve your data in a multi-user environment. It

allows for functions like optimistic locking, client synchronization, CRUD

operations in transactions, OCL queries executed as SQL in the database, etc.

The MDrivenServer also offers alternate methods to get access to your data

via Json objects so that you can build non-MDriven, savvy applications that do

CRUD operations on the data in your model. As the MDrivenServer has

interfaces to receive model updates from the MDrivenDesigner, the

development loop from idea to deploy can be very quick. The MDriven Book -

Next Chapter: MDrivenServer periodic server-side actions

{{Edited|July|12|2024}}

Page 97

The MDriven Book
MDrivenServer periodic server-side actions

Write the content here to display this box Running Background Jobs on the

Server A recurring pattern when building multi-user software systems is the

need to execute periodic actions. With MDrivenServer, you can execute

recurring actions or periodic actions. A Periodic action is defined by a

selection expression that selects what objects to act on. For each object

selected for a periodic action, we want to do the “action” and that probably

needs a cluster of objects to do different stuff to evolve some object state. To

enable efficient load for such an object cluster, you must define and associate

a ViewModel with each periodic action. * The periodic action logic will load

the ViewModel for your object and loop through all actions it finds in its root

ViewModel class. When all actions are executed, the periodic action logic will

save any changed state that was the result of your actions. * Periodic actions

can be used to “automatically” step your information from one state to the

next – given that the circumstances are correct. This ability may take some

getting used to, but it can be used for things like assigning a unique number

to an order or an article in your domain model – or for actions that need to be

done serverside for some particular reason. Define the periodic actions in the

ViewModelEditor: {{image:ServerSide Actions 01.png|frameless|246x246px}}

☛ {{image:ServerSide Actions 02.png|frameless|464x464px}} With this

technique, you can change any state of the objects in your database

efficiently with very little code. A common case is the need to assign a unique

number. I will demonstrate this. The client alone cannot be used to guarantee

that the next number in a sequence is taken, since there may be multiple

users trying to do this at the same time. You need to ensure you serialize all

Page 98

The MDriven Book
user requests for a new number. This is commonly done with a database lock.

There is, however, a nice alternative to a harsh DB-locking technique and that

is to serialize via a server-side action. Consider having this State machine:

{{image:ServerSide Actions 03.png|frameless|388x388px}} The ViewModel

associated with the periodic action on the server can now assign your

number. {{image:ServerSide Actions 04.png|frameless|550x550px}} The

client will set the AssignNumber state. The Server side action will look for

Order.allinstances- >select(o|o.State=’AssignNumber’) When objects are

found, they will be assigned a new number by the actions in the ServerSide

ViewModel and saved. Combined with a periodic client action that calls

selfVM.Refresh, we will see the client as soon as the state is changed to

NumberAssigned. Since we do not want the client to poll selfVM.Refresh all

the time, we set the EnableExpression in this action to

self.State=’AssignNumber’. Following this pattern, we get the user to push a

button to get a new number and we can show some info about working. The

client starts refreshing, the server does its job – the client gets the new info

by its refresh – the info about progress can be hidden as a consequence. This

way, we have serialized an action in our system with model-driven techniques

that will scale well and work for any number of users of your system. New

Recommendation on Number Assignment Pattern Do as shown above but

mark the state attribute and the number attribute with tagged value

Realtime. This removes the need for periodic action with Refresh on the

client. Combine this with triggering via SysAsyncTicket and lower/remove the

frequency of the ServerSide-job execution. Other Uses of Server-side Actions

We have also implemented several additional common actions you can have

the MDrivenServer perform for you. Emailing from the Server This topic is

Page 99

The MDriven Book
described here: Emailing from an app using MDrivenServer Importing Data

From Other SQL Sources This topic is described here:

Import_data_from_other_SQL_servers Exporting Files From MDriven Server

This topic is described here: More about exporting Catching Errors and Debug

Info For Server-side Actions Debugging serverside is covered here:

Debugging MDrivenServer Serverside actions Environment Specific Execution

Read on Server-wide variables here: Server_Wide_Variables The MDriven Book

- Next Chapter: SQLExport from MDriven Server

Page 100

The MDriven Book

Other uses of Server side Actions

Page 101

The MDriven Book
Emailing from the server

Page 102

The MDriven Book
Importing data from other SQL sources

Write the content here to display this box MDriven Server has been extended

with functionality to import data from other SQL-based systems. The MDriven

Server is designed to take care of the repetitive common tasks that always

seem to come back and haunt system developers. MDriven Server takes a

strictly model-driven approach to help you with the work. Earlier, I described

how to export files: Exporting files from MDriven Server#Producing export

files from MDriven Server and here is a link to where I explain more about the

concept of periodic actions: MDrivenServer periodic server-side actions What

is new today is the ability to read from an external SQL server and import

that data – strictly by using MDriven techniques - with zero need for external

programs. Let me show you. Suppose I have this model and I want Class1 to

be reference data from an external database: {{image:ServerSide Actions

Importing Data 01.png|frameless|257x257px}} I declare a ViewModel that

looks like this: {{image:ServerSide Actions Importing Data

02.png|frameless|469x469px}} It defines 4 columns with data and 2 actions:

1=ViewModel / new Nesting – the name of yet another ViewModel that will act

as an importer of the SQL result set, this can, in recent versions, be replaced

with Nesting and then you are expected to have a connected nesting with

that name in the ViewModel that has the Import action. This Nesting is then

defining the columns to import. {{image:2019-02-05 15h42

14.png|none|thumb|This shows how the Nesting column ties to Nesting inside

the same ViewModel. }} 2=Connectionstring- the external database (Update

2018-10-18: you can now use 'connectionstringodbc' and the logic will use

ODBC connection instead of sqlserver.) 3=Query – the SQL query (remember

Page 103

The MDriven Book
that you can build it with data from the rest of your model). 4=Key – if we

want the import to be able to update Class1, we need to explain what the key

is in the class. The value of the key should be a string with the value of the

name of the attribute we want to use as a key in the class. This attribute

must also be the result of the first column on the import nesting. And the

actions: SQLImport – using this name will trigger the import function in

MDriven Server. Finished – this is a generic action that executes the

expression - in this case setting Class2.Attribute1 to ‘Done’. So the returned

SQL data looks like this: {{image:ServerSide Actions Importing Data

03.png|frameless|323x323px}} And the ViewModel that is going to act as the

import template – called “TheImporter” in the example above - looks like this:

{{image:ServerSide Actions Importing Data 04.png|frameless}} I now declare

the ServerSide job in MDriven Server: {{image:ServerSide Actions Importing

Data 05.png|frameless|422x422px}} Now the MDriven Server will check every

20 seconds if the expression: Class2.allinstances- >select(attribute1=’todo’)

returns any rows. If it does, it fetches at most 2 of these and executes all the

actions found in TheServerSideJob. In MDriven Designer, I can create a Class2

with the debugger and save it: {{image:ServerSide Actions Importing Data

06.png|frameless|324x324px}} And then I check the MDriven Server log:

{{image:ServerSide Actions Importing Data 07.png|frameless|493x493px}} I

check my Class2: {{image:ServerSide Actions Importing Data

08.png|frameless|448x448px}} Attribute1 is now ‘Done’ – so the serverside

job relaxes and will not find anything more to do for now. Rewriting From Old

Style 2 ViewModels to New Style 1 ViewModel with Nesting The old style was

to have a ViewModel column pointing out the description of the import row.

The new more compact style is to instead refer to a Nesting within the main

Page 104

The MDriven Book
ViewModel doing the import. Example of the new style: {{image:2019-05-15

10h38 46.png|none|thumb|610x610px}} Example of the old style:

{{image:2019-05-15 10h41 20.png|none|thumb|980x980px}}Make sure the

columns in the import are not left as read-only since they are created that

way by default. If they are read-only, they will not receive any values:

{{image:2020-04-21 11h47 05.png|none|thumb|939x939px}}The MDriven

Book - Next Chapter: Exporting files from MDriven Server

Page 105

The MDriven Book
Producing export files from MDriven Server

Write the content here to display this box {| class="wikitable" !Special

column name ! |- |filename ! |- |path | |- |xslt |also see the XsltTransformXml

OCL operator |- |filedata | |- |savefile | |} Producing Export Files From MDriven

Server You can also write files by adding an action column called “savefile”

(case sensitive). When the periodic action supervisor in MDrivenServer sees

this action column, it looks for two additional columns: path and filename

(case insensitive). If these are found, the complete result of the ViewModel is

streamed out as XML by using the ViewModelXMLUtils.GetDataAsXml method.

The XML is then saved to path/filename. Like this: {{image:Exporting files

from MDriven Server.png|frameless|360x360px}} In a real-world application,

it looks like this: {{image:Exporting files from MDriven Server

02.png|frameless|362x362px}} Notice that both the path and filename are

evaluated expressions. Furthermore, the Action UpdateExportTime is

executed last – and it changes some data. Since the whole execution is

wrapped in a memory transaction, we make sure that we do not update the

export time unless the file was written and everything is ok. The resulting file

looks like this: {{image:Exporting files from MDriven Server

03.png|frameless|409x409px}} Shaping and Transforming Export Files This

SaveFile action has been updated to look for a column named XSLT. If it is

found, the contents of the field are assumed to be a valid XSLT

transformation. The XML from the ViewModel is transformed with the XSLT

and the result is saved as above. So if your XSLT is… , … then your output

would be… NO101087,Cosmica Tygg 90 ST… New Addition March 2019:

Arbitrary Filedata Add a ViewModel column named "filedata". This results in

Page 106

The MDriven Book
an Image, Blob, or other byte array type, and this data is saved rather than

the ViewModel-data-as-XML. If the "filedata"-column is of type string, the

string content is written to the file. The MDriven Book - Next Chapter:

SQLExport

Page 107

The MDriven Book
Shaping and transforming export files

Write the content here to display this box {| class="wikitable" !Special

column name ! |- |filename ! |- |path | |- |xslt |also see the XsltTransformXml

OCL operator |- |filedata | |- |savefile | |} Producing Export Files From MDriven

Server You can also write files by adding an action column called “savefile”

(case sensitive). When the periodic action supervisor in MDrivenServer sees

this action column, it looks for two additional columns: path and filename

(case insensitive). If these are found, the complete result of the ViewModel is

streamed out as XML by using the ViewModelXMLUtils.GetDataAsXml method.

The XML is then saved to path/filename. Like this: {{image:Exporting files

from MDriven Server.png|frameless|360x360px}} In a real-world application,

it looks like this: {{image:Exporting files from MDriven Server

02.png|frameless|362x362px}} Notice that both the path and filename are

evaluated expressions. Furthermore, the Action UpdateExportTime is

executed last – and it changes some data. Since the whole execution is

wrapped in a memory transaction, we make sure that we do not update the

export time unless the file was written and everything is ok. The resulting file

looks like this: {{image:Exporting files from MDriven Server

03.png|frameless|409x409px}} Shaping and Transforming Export Files This

SaveFile action has been updated to look for a column named XSLT. If it is

found, the contents of the field are assumed to be a valid XSLT

transformation. The XML from the ViewModel is transformed with the XSLT

and the result is saved as above. So if your XSLT is… , … then your output

would be… NO101087,Cosmica Tygg 90 ST… New Addition March 2019:

Arbitrary Filedata Add a ViewModel column named "filedata". This results in

Page 108

The MDriven Book
an Image, Blob, or other byte array type, and this data is saved rather than

the ViewModel-data-as-XML. If the "filedata"-column is of type string, the

string content is written to the file. The MDriven Book - Next Chapter:

SQLExport

Page 109

The MDriven Book
SQLExport serverside action

Write the content here to display this box SQLExport ServerSide Action The

SQLExport action is used to write data from your model into another external

SQL database. It is an alternative way to export data that needs no other

external components or maintenance than what MDriven Server provides.

SQLExport requires 'connectionstring' on root, 'data' (column name must start

with 'data', case insensitive) as a Nesting that contains the data row(s) to

insert or update, and on data - 'queryforinsert','queryforupdate' and

'queryforselectcount' as attributes (if queryforselectcount returns 0 the

queryforinsert is used, else update). Update 2018-10-18: You can now use

'connectionstringodbc' and the logic will use ODBC connection instead. The

very common case of “replicating” some model-driven data to another

database is implemented and scheduled in minutes. {{image:Exporting files

from MDriven Server 06.png|frameless|769x769px}} Common Gotchas The

data nesting must be collected even when you work in 1 object -> do

self->asset The MDriven Book - Next Chapter: OCL Expressions

Page 110

The MDriven Book

Object Constraint Language

Page 111

The MDriven Book
What is Object Constraint Language

Page 112

The MDriven Book
Certain important constructs

Write the content here to display this box Some constructs are more

returning than others as an everyday business developer with MDriven. Your

favorite ways to express yourself may be different from mine but these are

some of my returning expressions: {| class="wikitable" ! ! |- |let z=

Things.allinstances- >select(x|x.someInt>3)->size in (If z>4 then ‘There are

more than 4 Things with SomeInt>3’ else ‘There are ‘+z.asstring+’ Things

with SomeInt>3’ endif) |I use the “let” construct to assign a result of an

expression to a temporary variable. This is so I do not need to repeat myself

in the testing of z>4 and the z.asstring. |- |Thing.allinstances-

>groupby(x|x.SomeValue) |Groupby - this expression has the type

Collection(SomeValue:ValueStore+List:Collection(Thing)) so I get a list of

SomeValue and for each a list of the things that use it. |- |Thing.allinstances-

>collect(x|x.SomeValue.UsedB y.SomeInt->sum, x.SomeValue.UsedBy-

>collect(y|x, y.Details)) |Nested collecting. This expression gets the type

Collection(Part1:System.Int32+Part2:Collection(Thing:Thing+Det

ails:Collection(Detail))). The ability to nest collections is very powerful. In this

case, I start with all Things – grab the SomeValue valueStore– check what

other things have this set via the association MultiValuePick, and for these, I

sum up all SomeValue plus grab the Details. This kind of multi-level

collect-usage is very handy when summarizing deep object hierarchies on

different levels. |- |' '.Chars(0) |This expression returns System.Char. Since

OCL has no literal way to input a single character – it is always interpreted as

string – this trick will help when calling certain .net functions that take

characters as arguments. |- |if true then 'this returns a string' else 0.asstring

Page 113

The MDriven Book
endif |All return paths must result in the same type. Since OCL is a functional

language we must be consistent. This is one way to get the expression

correct; add.asstring after the zero |- |Thing.allinstances- >select(someint>3)

ValueStore.allinstances- >select(usedby- >notEmpty).Thing Like this:

Thing.allinstances- >select(someint>3) ->intersection(

ValueStore.allinstances- >select(usedby- >notEmpty).Thing) |Working with

OCLps – expressions that will be translated into SQL and executed in a

database- it is sometimes easier to do one expression per complex constraint

and at the end intersect all the expressions together. |- |self |When you are in

the context of an object, you can use the variable self to access the

properties of this. |} You may define methods in classes too and implement

these with OCL: {{image:Constructs image 1.png|frameless|402x402px}} You

will in the OCL implementation in the Body-property: {{image:Constructs

image 2.png|frameless|459x459px}} Notice that since this was a method,

MDriven will treat your OCL as EAL – something that has side effects. In this

case, our method does not have any side effects and I may want to be able to

use this method in OCL. But trying to use it in OCL will not succeed. Methods

with side effects are not recognized by OCL. There is a flag on the Method

definition called IsQuery and if this is set we “promise” that it does not have

intentional side effects. Now it is seen by OCL: {{image:Constructs image

3.png|frameless|464x464px}} We can then use our IsQuery method in any

expression in OCL. Thing.allinstances->select(x|x.MyMethod(x.SomeInt))

Summary OCL I am often asked if OCL is capable of doing everything we need

to do in a line of business application. The answer is that as long as the

arguments and result are representable in your model – yes it will do

anything. Sometimes you have external or ambient data not accessible from

Page 114

The MDriven Book
the model – then you cannot use OCL – until you make that data available. Not

only can you do everything you need – it also comes out in small easily

interpreted snippets of text that very much looks just like the requirements

you are set to implement. I like to compare OCL and modeling with Calculus.

In math you can discuss numbers and operators on those numbers in plain

language – but you seldom do since it will be error prone and require you to

use a lot of words for even simple things. Instead, everyone actually doing

math uses calculus notation to write up expressions. The expressions are

often reduced to the smallest possible – so that they are easily understood

and ready to be used for a purpose. Use OCL for the same reason but not on

only numbers but on all your designed information. Imagine a world without a

good way to declaratively work with math. In this world, we would probably

not have been able to do much cool technology. The ability to convey

compact math between people is very good for mankind. I am certain that a

good compact way to convey rules on information is equally important – if not

even more usable – for mankind. The MDriven Book - Next Chapter: Seeker

view

Page 115

The MDriven Book
EAL differences

Page 116

The MDriven Book
OCLps differences

Page 117

The MDriven Book
Summary OCL

Write the content here to display this box Some constructs are more

returning than others as an everyday business developer with MDriven. Your

favorite ways to express yourself may be different from mine but these are

some of my returning expressions: {| class="wikitable" ! ! |- |let z=

Things.allinstances- >select(x|x.someInt>3)->size in (If z>4 then ‘There are

more than 4 Things with SomeInt>3’ else ‘There are ‘+z.asstring+’ Things

with SomeInt>3’ endif) |I use the “let” construct to assign a result of an

expression to a temporary variable. This is so I do not need to repeat myself

in the testing of z>4 and the z.asstring. |- |Thing.allinstances-

>groupby(x|x.SomeValue) |Groupby - this expression has the type

Collection(SomeValue:ValueStore+List:Collection(Thing)) so I get a list of

SomeValue and for each a list of the things that use it. |- |Thing.allinstances-

>collect(x|x.SomeValue.UsedB y.SomeInt->sum, x.SomeValue.UsedBy-

>collect(y|x, y.Details)) |Nested collecting. This expression gets the type

Collection(Part1:System.Int32+Part2:Collection(Thing:Thing+Det

ails:Collection(Detail))). The ability to nest collections is very powerful. In this

case, I start with all Things – grab the SomeValue valueStore– check what

other things have this set via the association MultiValuePick, and for these, I

sum up all SomeValue plus grab the Details. This kind of multi-level

collect-usage is very handy when summarizing deep object hierarchies on

different levels. |- |' '.Chars(0) |This expression returns System.Char. Since

OCL has no literal way to input a single character – it is always interpreted as

string – this trick will help when calling certain .net functions that take

characters as arguments. |- |if true then 'this returns a string' else 0.asstring

Page 118

The MDriven Book
endif |All return paths must result in the same type. Since OCL is a functional

language we must be consistent. This is one way to get the expression

correct; add.asstring after the zero |- |Thing.allinstances- >select(someint>3)

ValueStore.allinstances- >select(usedby- >notEmpty).Thing Like this:

Thing.allinstances- >select(someint>3) ->intersection(

ValueStore.allinstances- >select(usedby- >notEmpty).Thing) |Working with

OCLps – expressions that will be translated into SQL and executed in a

database- it is sometimes easier to do one expression per complex constraint

and at the end intersect all the expressions together. |- |self |When you are in

the context of an object, you can use the variable self to access the

properties of this. |} You may define methods in classes too and implement

these with OCL: {{image:Constructs image 1.png|frameless|402x402px}} You

will in the OCL implementation in the Body-property: {{image:Constructs

image 2.png|frameless|459x459px}} Notice that since this was a method,

MDriven will treat your OCL as EAL – something that has side effects. In this

case, our method does not have any side effects and I may want to be able to

use this method in OCL. But trying to use it in OCL will not succeed. Methods

with side effects are not recognized by OCL. There is a flag on the Method

definition called IsQuery and if this is set we “promise” that it does not have

intentional side effects. Now it is seen by OCL: {{image:Constructs image

3.png|frameless|464x464px}} We can then use our IsQuery method in any

expression in OCL. Thing.allinstances->select(x|x.MyMethod(x.SomeInt))

Summary OCL I am often asked if OCL is capable of doing everything we need

to do in a line of business application. The answer is that as long as the

arguments and result are representable in your model – yes it will do

anything. Sometimes you have external or ambient data not accessible from

Page 119

The MDriven Book
the model – then you cannot use OCL – until you make that data available. Not

only can you do everything you need – it also comes out in small easily

interpreted snippets of text that very much looks just like the requirements

you are set to implement. I like to compare OCL and modeling with Calculus.

In math you can discuss numbers and operators on those numbers in plain

language – but you seldom do since it will be error prone and require you to

use a lot of words for even simple things. Instead, everyone actually doing

math uses calculus notation to write up expressions. The expressions are

often reduced to the smallest possible – so that they are easily understood

and ready to be used for a purpose. Use OCL for the same reason but not on

only numbers but on all your designed information. Imagine a world without a

good way to declaratively work with math. In this world, we would probably

not have been able to do much cool technology. The ability to convey

compact math between people is very good for mankind. I am certain that a

good compact way to convey rules on information is equally important – if not

even more usable – for mankind. The MDriven Book - Next Chapter: Seeker

view

Page 120

The MDriven Book
Seeker view

Write the content here to display this box Definition A Seeker is a special

ViewModel for searching and finding things in the database. Introduction to

SeekLogic To get anything done, you need to find the necessary things. A

typical software system has the same need. How do we go about declaring a

non-limiting, multi-variable, user-friendly seeker into a generic model-driven

system like the ones we build with MDriven? This is what we need: # We need

unrooted (i.e. not having anything to start with) persistent storage evaluated

OCL expressions to execute a search. # We need user input on how to limit

the search. # We need to allow the user to use different limiting criteria as he

or she sees fit; after all, the One-Field-Matches-Everything tactic that Google

uses does not cut the mustard in enterprise applications. Users will want to

limit the search to “Only this department”, “Only things from yesterday” etc,

and even in Google, you need to use an extended syntax to get this done. #

We need to allow multiple sets of search definitions per seeker interface. If

the user does not get a hit using the filters with the first set, it is natural for

the user to “try again”. Then, we want to use another set of search criteria;

this has been tested on real users and many find it intuitive and obvious that

it should work this way. Consider this model: {{image:Model

image.png|frameless|356x356px}} This is how we can define a Seeker:

{{image:Image 3 model.png|frameless|564x564px}} #1 We declare variables

that hold the user input – one variable is a string and the other is an Object

reference of type ReferenceClass (from our model). #2 We add Columns that

use these variables so that we get some UI for the user to enter the criteria

into. The Reference value we set up as a PickList. We create a

Page 121

The MDriven Book
SearchExpression - right-click menu on the ViewModelColumn - Add nested –

Add search expr. When adding the first search expression to the ViewModel,

the Designer will also add the default implementation details with a

vSeekerResult variable and a SeekString. This is intended to help - there is

nothing magical about the added widgets. The only important thing in a

Seeker is that there is a variable named vSeekerResult, which is of type

collection. #3 Add two criteria. The result of the two criteria will be

intersected (on the server side). Here is an important fact: Since the result of

the criteria will be intersected, we need some way to say if a criterion is

Active or not – after all, it is up to the user to limit the search on either or

both of the two criteria. This is how the activation of a Criteria is done:

{{image:Image 4 model.png|frameless|390x390px}} and {{image:Image 5

model.png|frameless|390x390px}} The Active Expression is optional. If you

leave it blank, it defaults to true – always on. #4 The second batch of search

expressions is executed the second time the user clicks the search button

BUT only if the search variables have not changed. You can have as many

search batches as you need, and they are Round-robin-used whenever the

user clicks the search button with untouched variables. Whenever a variable

is changed, the Round-robin is reset and the first batch is used again. Even if

these rules may seem complex, they are intuitive for the user – especially if

you use the search batches to filter for the same data as the resulting

columns show. For example, the user enters someone’s first name, but your

first batch filters on the last name – the wrong people come up for the first

search, and the user hits search again. Now we use the second batch where

you filter on the first name – voila! This was just an example. You can create a

filter expression that unions the first name and the last name results.

Page 122

The MDriven Book
Person.allinstances->select(a|a.FirstName.SqlLike(vSeekString+’%’))->union(

Person.allinstances- >select(a|a.LastName.SqlLike(vSeekString+’%’)))

Another example might be that the user enters a number. First, we try to

match it with a product code, the user hits search again, and we try to match

it with the order number. The user is still not happy so he hits search again.

Now we match it with the phone number of the customer – the user is happy.

In this example, we could have chosen to create a detailed search interface

with 3 text boxes – one for the product code, one for the order number, and

one for the customer phone number – just as valid. Or we could do a union

expression as above – just as valid. Choose the strategy that sits best with

your users, but I urge you to test the simple interface with a single or only a

few input boxes - it is user-friendly. Databases Use SQL The search

expressions for OCL criteria are different from those of other ViewModel

column expressions in one important aspect: they are executed against

persistent storage (your database). If your database is an SQL-Server, these

expressions will be translated to SQL and sent to the database for evaluation

and execution. The database is much better and faster at handling huge

volumes of data than MDriven. This means that we can filter out specific

objects in our model from a nearly unlimited-sized database. The

multi-variable seekers described in this chapter will be the natural starting

point for your users' work in your system. They search – they find – and then

they work. The work part is often rooted in a specific found object where your

other ViewModels expand the neighboring information. Useful Search

Examples Dates Dates are a little tricky because SQL servers encode dates in

many formats. We need to pass dates to search for, not as text, but as values

of the date type. So, when filtering on dates, use variables of the type

Page 123

The MDriven Book
DateTime. We've created a variable vAfterDate here and are using it to

search.

Person.allInstances->select(p|p.Registrered>=vAfterDate)->orderBy(p|p.Regi

strered) This will find all Persons registered after the given date and order

them on the registered date. Need to filter on dates without the user seeing

it? (To limit the search result maybe?) Set the DateTime variable before

selfVM.Search on the search button like this: vAfterDate:=

DateTime.Today.addMonths(-6); selfVM.Search Limiting the Number of

Results By adding the tagged value MaxFetch, you can change the number of

records shown before asking the user to extend their search. Also, see

SeekMore logic with paging Search_result_pages. What Type is Searched -

What Type is vSeekerResult? The vSeekerResult will be created for you as a

collection of RootType of the ViewModel. If you want another type of

vSeekerResult, you can declare the vSeekerResult as

Collection(YourDesiredType), and then seeker logic will assume the search

type is YourDesiredType. Order, OrderBy, OrderDescending in Seeker -

Extensions added 2021-01-16 Since the MultiVariable seeker may combine

expressions with ->intersection, it has not been very easy to get a good

"order by" expression to work consistently over the many possible

combinations of final expressions used. Furthermore, OclPS has been limited

to using only the attributes on the main class for order by. To remedy these 2

challenges, we have extended OclPS - orderby and orderDescending - to

support single link navigations to attributes used in order. We have

introduced a new type of nesting in the ViewModel. This Nesting is a

SearchExpression-nesting with a name starting with OrderExpression. If the

SearchLogic finds this, we now grab the first active criteria from there and

Page 124

The MDriven Book
extract the OrderBy/OrderDescending expression-part - this part is appended

to the combined resulting expression from the original part of the

searchlogic. The video discussing this can be found here:

[https://www.youtube.com/watch?v=55K0irODBRE Wednesdays-with-MDriven

| View Model Editor 2021: Part 3] {{image:2021-09-27 16h09

061.png|none|thumb|585x585px}}Seek form (web) * Use the tagged value

Eco.HiliteGridColumn to signal the user to sort order/searched column that...

* Find it by clicking on the orange search-expression and using the "Tagged

value" button or the property inspector. The MDriven Book - Next Chapter:

Efficient ViewModel fetch

Page 125

The MDriven Book
Databases use SQL

Write the content here to display this box Definition A Seeker is a special

ViewModel for searching and finding things in the database. Introduction to

SeekLogic To get anything done, you need to find the necessary things. A

typical software system has the same need. How do we go about declaring a

non-limiting, multi-variable, user-friendly seeker into a generic model-driven

system like the ones we build with MDriven? This is what we need: # We need

unrooted (i.e. not having anything to start with) persistent storage evaluated

OCL expressions to execute a search. # We need user input on how to limit

the search. # We need to allow the user to use different limiting criteria as he

or she sees fit; after all, the One-Field-Matches-Everything tactic that Google

uses does not cut the mustard in enterprise applications. Users will want to

limit the search to “Only this department”, “Only things from yesterday” etc,

and even in Google, you need to use an extended syntax to get this done. #

We need to allow multiple sets of search definitions per seeker interface. If

the user does not get a hit using the filters with the first set, it is natural for

the user to “try again”. Then, we want to use another set of search criteria;

this has been tested on real users and many find it intuitive and obvious that

it should work this way. Consider this model: {{image:Model

image.png|frameless|356x356px}} This is how we can define a Seeker:

{{image:Image 3 model.png|frameless|564x564px}} #1 We declare variables

that hold the user input – one variable is a string and the other is an Object

reference of type ReferenceClass (from our model). #2 We add Columns that

use these variables so that we get some UI for the user to enter the criteria

into. The Reference value we set up as a PickList. We create a

Page 126

The MDriven Book
SearchExpression - right-click menu on the ViewModelColumn - Add nested –

Add search expr. When adding the first search expression to the ViewModel,

the Designer will also add the default implementation details with a

vSeekerResult variable and a SeekString. This is intended to help - there is

nothing magical about the added widgets. The only important thing in a

Seeker is that there is a variable named vSeekerResult, which is of type

collection. #3 Add two criteria. The result of the two criteria will be

intersected (on the server side). Here is an important fact: Since the result of

the criteria will be intersected, we need some way to say if a criterion is

Active or not – after all, it is up to the user to limit the search on either or

both of the two criteria. This is how the activation of a Criteria is done:

{{image:Image 4 model.png|frameless|390x390px}} and {{image:Image 5

model.png|frameless|390x390px}} The Active Expression is optional. If you

leave it blank, it defaults to true – always on. #4 The second batch of search

expressions is executed the second time the user clicks the search button

BUT only if the search variables have not changed. You can have as many

search batches as you need, and they are Round-robin-used whenever the

user clicks the search button with untouched variables. Whenever a variable

is changed, the Round-robin is reset and the first batch is used again. Even if

these rules may seem complex, they are intuitive for the user – especially if

you use the search batches to filter for the same data as the resulting

columns show. For example, the user enters someone’s first name, but your

first batch filters on the last name – the wrong people come up for the first

search, and the user hits search again. Now we use the second batch where

you filter on the first name – voila! This was just an example. You can create a

filter expression that unions the first name and the last name results.

Page 127

The MDriven Book
Person.allinstances->select(a|a.FirstName.SqlLike(vSeekString+’%’))->union(

Person.allinstances- >select(a|a.LastName.SqlLike(vSeekString+’%’)))

Another example might be that the user enters a number. First, we try to

match it with a product code, the user hits search again, and we try to match

it with the order number. The user is still not happy so he hits search again.

Now we match it with the phone number of the customer – the user is happy.

In this example, we could have chosen to create a detailed search interface

with 3 text boxes – one for the product code, one for the order number, and

one for the customer phone number – just as valid. Or we could do a union

expression as above – just as valid. Choose the strategy that sits best with

your users, but I urge you to test the simple interface with a single or only a

few input boxes - it is user-friendly. Databases Use SQL The search

expressions for OCL criteria are different from those of other ViewModel

column expressions in one important aspect: they are executed against

persistent storage (your database). If your database is an SQL-Server, these

expressions will be translated to SQL and sent to the database for evaluation

and execution. The database is much better and faster at handling huge

volumes of data than MDriven. This means that we can filter out specific

objects in our model from a nearly unlimited-sized database. The

multi-variable seekers described in this chapter will be the natural starting

point for your users' work in your system. They search – they find – and then

they work. The work part is often rooted in a specific found object where your

other ViewModels expand the neighboring information. Useful Search

Examples Dates Dates are a little tricky because SQL servers encode dates in

many formats. We need to pass dates to search for, not as text, but as values

of the date type. So, when filtering on dates, use variables of the type

Page 128

The MDriven Book
DateTime. We've created a variable vAfterDate here and are using it to

search.

Person.allInstances->select(p|p.Registrered>=vAfterDate)->orderBy(p|p.Regi

strered) This will find all Persons registered after the given date and order

them on the registered date. Need to filter on dates without the user seeing

it? (To limit the search result maybe?) Set the DateTime variable before

selfVM.Search on the search button like this: vAfterDate:=

DateTime.Today.addMonths(-6); selfVM.Search Limiting the Number of

Results By adding the tagged value MaxFetch, you can change the number of

records shown before asking the user to extend their search. Also, see

SeekMore logic with paging Search_result_pages. What Type is Searched -

What Type is vSeekerResult? The vSeekerResult will be created for you as a

collection of RootType of the ViewModel. If you want another type of

vSeekerResult, you can declare the vSeekerResult as

Collection(YourDesiredType), and then seeker logic will assume the search

type is YourDesiredType. Order, OrderBy, OrderDescending in Seeker -

Extensions added 2021-01-16 Since the MultiVariable seeker may combine

expressions with ->intersection, it has not been very easy to get a good

"order by" expression to work consistently over the many possible

combinations of final expressions used. Furthermore, OclPS has been limited

to using only the attributes on the main class for order by. To remedy these 2

challenges, we have extended OclPS - orderby and orderDescending - to

support single link navigations to attributes used in order. We have

introduced a new type of nesting in the ViewModel. This Nesting is a

SearchExpression-nesting with a name starting with OrderExpression. If the

SearchLogic finds this, we now grab the first active criteria from there and

Page 129

The MDriven Book
extract the OrderBy/OrderDescending expression-part - this part is appended

to the combined resulting expression from the original part of the

searchlogic. The video discussing this can be found here:

[https://www.youtube.com/watch?v=55K0irODBRE Wednesdays-with-MDriven

| View Model Editor 2021: Part 3] {{image:2021-09-27 16h09

061.png|none|thumb|585x585px}}Seek form (web) * Use the tagged value

Eco.HiliteGridColumn to signal the user to sort order/searched column that...

* Find it by clicking on the orange search-expression and using the "Tagged

value" button or the property inspector. The MDriven Book - Next Chapter:

Efficient ViewModel fetch

Page 130

The MDriven Book
Efficient fetch - real case (advanced - skip until you have the need)

Page 131

The MDriven Book
Introducing MDriven Turnkey

Page 132

The MDriven Book
Creating your own MDriven Turnkey instance in your Azure account

Page 133

The MDriven Book
Set up MDriven Turnkey on premise

Write the content here to display this box There can be several reasons for

running the MDriven Turnkey software on premise rather than in the cloud -

and it is easy to achieve. To run MDriven Turnkey on your own IIS, do the

following: 1. Create a new IIS application: {{image:Turnkey on premise image

1.png|frameless}} 2. Download these application packages, MDriven Server

and MDriven Turnkey: {{image:Turnkey on premise image 2.png|frameless}}

3. Make sure you understand how to make the IIS server use https and how

you can either self-sign or acquire your own certificate. This is key for making

the internal WCF communication in MDriven Turnkey work. 4. Import the

Application Package for MDriven Turnkey into your IIS app: {{image:Turnkey

on premise image 3.png|frameless}} {{image:Turnkey on premise image

4.png|frameless}} {{image:Turnkey on premise image 5.png|frameless}}

{{image:Turnkey on premise image 6.png|frameless}} Now import the

package for MDriven Server into your first application: {{image:Turnkey on

premise image 7.png|frameless}} Name the application __MDrivenServer –

with two underscores: {{image:Turnkey on premise image 8.png|frameless}}

In the end, you will have this: {{image:Turnkey on premise image

9.png|frameless}} Configure for https (not described in this book –

IIS-specific knowledge) Notice the __MDrivenServer/logs catalog; things will

work better if your application can access this. Find it in File Explorer and

give read/write access to “IIS AppPool\NameOfTheAppPool”. To configure

your system navigate to the __MDrivenServer application:

https://localhost/MyMDrivenTurnkeyApp1/__MDrivenServer/ You should see

this: {{image:Turnkey on premise image 10.png|frameless}} This is the

Page 134

The MDriven Book
server’s response to not finding the expected database. It creates it and sets

things up to the best of its ability. Click Index to go back to the default page:

{{image:Turnkey on premise image 11.png|frameless}} We are prompted

with a login – but we need to register a user that the MDriven Turnkey app

will use to access the MDriven Server. You will also want to access the

MDriven Server in order to upload and evolve models – so create a user “b”

and remember the password: {{image:Turnkey on premise image

12.png|frameless}} Now, log into MDriven Server with this user:

{{image:Turnkey on premise image 13.png|frameless}} In the admin area,

choose user admin: {{image:Turnkey on premise image 14.png|frameless}}

In UserAdmin, you can control the existing users on your MDrivenServer – we

need an account to be used by your Turnkey site. To tighten security for our

MDrivenServer, we are going to: # Assign the users we want to have access

to the role SuperAdmin # Check the box for Admin require Identification #

Check the box for Services require identification Check the box for Turn off

registration: {{image:Turnkey on premise image

15.png|frameless|306x306px}} This way, we will enforce user identification

and turn off the ability to register as a new user. It is important that you

remember the password for the users you have – otherwise, you will be

locked out. When you have accidentally locked yourself out, you can find the

admin database, and open it with SqlServerCompact tools. Find table

admin_GlobalSettings and set column TurnOffRegistration to 0 (false). Now,

you may register a new user and regain control. {{image:Turnkey on premise

image 16.png|frameless}} The database is located in

__MDrivenServer\App_Data\DatabaseCompact.sdf Now the MDrivenServer is

fully configured and we will look at the MDriven Turnkey application that will

Page 135

The MDriven Book
use it. Pointing our browser at the Turnkey application will give us this:

https://localhost/MyMDrivenTurnkeyApp1 {{image:Turnkey on premise image

17.png|frameless}} The reason is that the Turnkey application expects to find

a file with information about what user and password to use to access

__MDrivenServer. The file should be in the App_Data folder and its name must

be TurnkeySettings.xml. {{image:Turnkey on premise image

18.png|frameless}} As we see, there is a template file “TurnkeySettings –

NotInEffect.xml” – copy this and name it “TurnkeySettings.xml” This file is

normally managed from the LicenseAndTicket website – but since we are now

installing Turnkey locally, the LicenseAndTicket has no access to help us with

this. We need to edit it manually. Open the file and fill in the username and

password you picked for MDriven: {{image:Turnkey on premise image 19

.png|frameless}} Once this is done, we try our app again (you must restart

your app-pool so that the file is re-read): {{image:Turnkey on premise image

19.png|frameless}} When we use MDriven Designer, we will also need to

enter the address to our MDriven Server manually – so skip the first login

page and go to the second page: {{image:Turnkey on premise image

20.png|frameless}} {{image:Turnkey on premise image

22.png|frameless|301x301px}} We must fill in the user and password that

has access to MDriven Server. We need to say it is slot A0 and check

“Automated Deploy” – that means an upload of the model is automatically

deployed. The server address is the same one we use to access MDriven

Server: https://localhost/MyMDrivenTurnkeyApp1/__MDrivenServer And now

we have everything set up to run the development loop or production

in-house – nothing on in the cloud. To update the site with fresh binaries for

MDriven Turnkey or MDriven server, we can simply reapply fresh packages

Page 136

The MDriven Book
from the build server. {{image:Turnkey on premise image

4.png|frameless|333x333px}} {{image:Turnkey on premise image

24.png|frameless|333x333px}} Just make sure to choose “Append files” –

because if you “delete”, you will lose the settings we just set up and the

database with any models. {{image:Turnkey on premise image

25.png|frameless}} The MDriven Book - Next Chapter: MDriven Turnkey

Architecture

Page 137

The MDriven Book

MDriven Turnkey Architecture

Page 138

The MDriven Book
Responsibilities

Page 139

The MDriven Book
Data roundtrip

Page 140

The MDriven Book

Security

Page 141

The MDriven Book
Information Security

Write the content here to display this box IT security covers the security of

your Information Technology. A natural subset of IT security is information

security - secure your information, in this context, as part of an IT system. I

often argue that nothing is as easy to sell as fear. Fear of anything. Fear of

lacking IT security and Information Security is no different. It is an easy sell.

You just open with the line, “Are you sure your data is secure – because I

think it might not be?” Deal! Show me! Help me! In my opinion, these are the

obvious IT security hygienic must-haves: * Make sure you authenticate users.

* Have an order to your authorization processes. * Keep your computers clean

from unwanted software. Beyond the obvious IT security must-haves, the

delivered “Show me”, or “Help me” very seldom come to any real practical

effect, other than “You should not have data worth stealing – and if you do,

you should not let anyone come near it – not even your staff”. Well, thank

you, Mr. IT-security expert. Not helpful at all. From my experience in

business, government, and military, the latter two take IT security painfully

seriously. This does not automatically mean that they are safe, but they

spend a lot of effort aiming to be safe. There is a tradeoff between protecting

data and making it easy for trusted users to work with data. You must find a

level in this tradeoff that reduces risk and does not come in the way of work.

There is no such thing as eliminating risk. Trying to eliminate risk will

paralyze you and you will get nothing done. Decide what risk level is

acceptable – and note that this level may contrast with the different types of

data that you have. The risk level may also vary not only on data type and

data value but also on data aggregation; you want to protect all the data

Page 142

The MDriven Book
more than the individual parts. The Basics of IT Security It is pretty simple

really. Think of a PC as a piece of luggage at the airport. “Sir, did you pack

this bag yourself? Have you watched it all the time since you closed it? Can

you guarantee that there is nothing in here you received from others?” When

it comes to your laptop – or the laptop you got from work – you must say

“No!” Your computer is not to be trusted. Period. This does not mean that

there is anything wrong with it, but we cannot be sure. It is easy to sell this

kind of fear. When it comes to the servers for your company that are placed

under lock and key – patched and maintained by educated personnel – we

might say “Well, we sure hope we did not receive anything we did not want.”

So your servers might be safe – and they are easier to trust than user-pcs. IT

departments will try to toughen your PC up. Again, with the luggage

metaphor, they might make it solid, making it impossible to store anything

inside, safer – but you are not helped by a solid piece of luggage or a

computer you cannot store anything in. Anything in between fully functional

and solid is possible, but they can only do so much, and almost anything they

do limits the degree of freedom you have with the computer. The IT

department is most afraid that your computer contains Trojan software that

infects others at work – and increases the threat against the servers. Trojans

can act as beach-heads inside your company from which hackers may have a

line of sight to your servers. Trojans may also be a nuance or even hold your

computer for ransom – but a professional attacking Trojan says nothing; it

just steals your data – for weeks or years. Once infected, it is really hard to

trust a complex IT environment again because there are so many places

where the Trojans may “hide” during cleaning. The cleaning will be extensive

and this motivates great precautions to avoid infection. This text, however,

Page 143

The MDriven Book
will not deal with that kind of IT security. I just had to state the facts, to

make sure we are on the same page. This text is about how we should build

systems in this corrosive and hostile environment to control the risk as we

expose our data to authorized users. Building Safer Software Systems The

thing with building protected software systems is that part of the software

will implement the lock that protects it. I will call “the lock” the

AccessControlSystem. If the Access Control System protects the data from

being exposed to the wrong user – then who protects the

AccessControlSystem from being bypassed? This is the heart of the matter.

Did someone tell you that your system is protected by the Active Directory in

your company? Wrong – the ActiveDirectory may be the one handing out the

keys to the lock – but the system itself is responsible for implementing the

lock. An Access Control System is almost always part of the system itself

(true for all nontrivial access control), just like the lock on your front door is

mounted as a part of the door. So what is the best way to protect the lock?

Let the lock stay on the server! This is the conclusion that most software

architects have reached. Since the lock is a part of the system – the system

must stay on the server as well. This is the main reason for moving away from

rich fat clients on Windows to a typically worse user experience with web

technology like MVC even for in-house systems. Another way to keep the

system on the server is to use terminal server solutions. The important thing

is that the Access Control System filters out the slice of data that is

acceptable to show an individually authenticated user. Filtering out means

that you have a bigger volume to filter from – a volume to reduce to a subset.

The larger volume is what the Access Control System protects. If the Access

Control System is going to protect this volume and filter ok data from it, then

Page 144

The MDriven Book
it must have access to the whole. This is simple logic. Having stated these

facts, we have a clear view of our goal: to deliver approved slices of data to

authenticated users – our users are not physically on the servers – they are on

their laptops. Although the MVC web approach does this, many have found

the reduced user experience is not ideal for prolonged use in an office. Bulky

postbacks and the tendency to reduce the amount of data on a single screen

to avoid lags often make web-based systems click-intensive and filled with

stressful waiting. To mitigate this, many software architects have started to

use Ajax and Javascript to build a richer user experience to replace the plain

data presentation offered by MVC. When doing so, they might start to hold

data locally in the browser, and gradually, they may start to lose track of our

simple goal – maybe implementing filtering in the browser – maybe keeping

data between screen navigations – maybe doing some work that was already

part of the Access Control System. No one is certain, because it is difficult to

see what a software system does without high-effort reviewing of actual

code. How MDriven Turnkey Does It – Every Time To avoid the risk of

muddling the definition of the Access Control System while still offering a rich

user experience, MDriven Turnkey does 4 things: # Lets the ViewModel define

the slice of data we agree with showing an authenticated user with

authorization for a specific use case. The user cannot see more by definition

in the framework. # Lets the ViewModel reduction of data from the complete

model happen on the server and since each ViewModel is fully implemented

with the declarative Object Constraints Language (OCL), you also have an

exact and easily understood definition of the information subset it contains.

Defines the rules that build up the Access Control Systems in the model

declaratively – with static verification – and the ability to make the rules

Page 145

The MDriven Book
depend on any data in your model. # Streams the resulting slice of data – and

any changes to it – to a client to produce a rich client experience without slow

roundtrips and exposes nothing else. MDriven Turnkey comes with the Access

Control System already in place – on the server – you merely need to define

your keys depending on your rules based on your model. Even if you build a

WPF, AngularJS, or Android client – the Access Control System is on the server

adhering to your rules. Since the platform has the Access Control System

in-built, developers can make fewer mistakes. The verification of the rules

can now be done statically in the model and we do not need to review code to

detect the tendencies of muddling the simple goal of ensuring information

filtering is happening on the server only. MDriven Turnkey user

authentication is done with standard OAuth2 allowing for implementations

with optional social login or Single sign-on (SSO) with OpenId. Multifactor

authentication can easily be made part of your Access Control System.

Server-to-server authentication using OAuth2 is also supported as shown

here. All communication is done over SSL and if you have stronger crypto

needs, any tunnel can be used to protect traffic between the user and server.

We claim two important things: * Building software systems with MDriven

Turnkey will make them intrinsically safe – meaning that even the lowest

effort will expose only what you intend to expose. * Using MDriven Turnkey

will make your complete Access Control System possible to inspect even for

non-coders – meaning that security officers can understand what risk level

individual screens pose even in an evolving system. Both these properties are

highly sought after by organizations striving to minimize the risk of unwanted

information leakage – whether it is from coding mistakes, architectural

mistakes, misinterpreted requirements, or simply plain laziness of either

Page 146

The MDriven Book
developers or reviewers. The MDriven Book - Next Chapter: Access control

system in MDriven {{Edited|July|12|2024}}

Page 147

The MDriven Book
The basics of IT security

Write the content here to display this box IT security covers the security of

your Information Technology. A natural subset of IT security is information

security - secure your information, in this context, as part of an IT system. I

often argue that nothing is as easy to sell as fear. Fear of anything. Fear of

lacking IT security and Information Security is no different. It is an easy sell.

You just open with the line, “Are you sure your data is secure – because I

think it might not be?” Deal! Show me! Help me! In my opinion, these are the

obvious IT security hygienic must-haves: * Make sure you authenticate users.

* Have an order to your authorization processes. * Keep your computers clean

from unwanted software. Beyond the obvious IT security must-haves, the

delivered “Show me”, or “Help me” very seldom come to any real practical

effect, other than “You should not have data worth stealing – and if you do,

you should not let anyone come near it – not even your staff”. Well, thank

you, Mr. IT-security expert. Not helpful at all. From my experience in

business, government, and military, the latter two take IT security painfully

seriously. This does not automatically mean that they are safe, but they

spend a lot of effort aiming to be safe. There is a tradeoff between protecting

data and making it easy for trusted users to work with data. You must find a

level in this tradeoff that reduces risk and does not come in the way of work.

There is no such thing as eliminating risk. Trying to eliminate risk will

paralyze you and you will get nothing done. Decide what risk level is

acceptable – and note that this level may contrast with the different types of

data that you have. The risk level may also vary not only on data type and

data value but also on data aggregation; you want to protect all the data

Page 148

The MDriven Book
more than the individual parts. The Basics of IT Security It is pretty simple

really. Think of a PC as a piece of luggage at the airport. “Sir, did you pack

this bag yourself? Have you watched it all the time since you closed it? Can

you guarantee that there is nothing in here you received from others?” When

it comes to your laptop – or the laptop you got from work – you must say

“No!” Your computer is not to be trusted. Period. This does not mean that

there is anything wrong with it, but we cannot be sure. It is easy to sell this

kind of fear. When it comes to the servers for your company that are placed

under lock and key – patched and maintained by educated personnel – we

might say “Well, we sure hope we did not receive anything we did not want.”

So your servers might be safe – and they are easier to trust than user-pcs. IT

departments will try to toughen your PC up. Again, with the luggage

metaphor, they might make it solid, making it impossible to store anything

inside, safer – but you are not helped by a solid piece of luggage or a

computer you cannot store anything in. Anything in between fully functional

and solid is possible, but they can only do so much, and almost anything they

do limits the degree of freedom you have with the computer. The IT

department is most afraid that your computer contains Trojan software that

infects others at work – and increases the threat against the servers. Trojans

can act as beach-heads inside your company from which hackers may have a

line of sight to your servers. Trojans may also be a nuance or even hold your

computer for ransom – but a professional attacking Trojan says nothing; it

just steals your data – for weeks or years. Once infected, it is really hard to

trust a complex IT environment again because there are so many places

where the Trojans may “hide” during cleaning. The cleaning will be extensive

and this motivates great precautions to avoid infection. This text, however,

Page 149

The MDriven Book
will not deal with that kind of IT security. I just had to state the facts, to

make sure we are on the same page. This text is about how we should build

systems in this corrosive and hostile environment to control the risk as we

expose our data to authorized users. Building Safer Software Systems The

thing with building protected software systems is that part of the software

will implement the lock that protects it. I will call “the lock” the

AccessControlSystem. If the Access Control System protects the data from

being exposed to the wrong user – then who protects the

AccessControlSystem from being bypassed? This is the heart of the matter.

Did someone tell you that your system is protected by the Active Directory in

your company? Wrong – the ActiveDirectory may be the one handing out the

keys to the lock – but the system itself is responsible for implementing the

lock. An Access Control System is almost always part of the system itself

(true for all nontrivial access control), just like the lock on your front door is

mounted as a part of the door. So what is the best way to protect the lock?

Let the lock stay on the server! This is the conclusion that most software

architects have reached. Since the lock is a part of the system – the system

must stay on the server as well. This is the main reason for moving away from

rich fat clients on Windows to a typically worse user experience with web

technology like MVC even for in-house systems. Another way to keep the

system on the server is to use terminal server solutions. The important thing

is that the Access Control System filters out the slice of data that is

acceptable to show an individually authenticated user. Filtering out means

that you have a bigger volume to filter from – a volume to reduce to a subset.

The larger volume is what the Access Control System protects. If the Access

Control System is going to protect this volume and filter ok data from it, then

Page 150

The MDriven Book
it must have access to the whole. This is simple logic. Having stated these

facts, we have a clear view of our goal: to deliver approved slices of data to

authenticated users – our users are not physically on the servers – they are on

their laptops. Although the MVC web approach does this, many have found

the reduced user experience is not ideal for prolonged use in an office. Bulky

postbacks and the tendency to reduce the amount of data on a single screen

to avoid lags often make web-based systems click-intensive and filled with

stressful waiting. To mitigate this, many software architects have started to

use Ajax and Javascript to build a richer user experience to replace the plain

data presentation offered by MVC. When doing so, they might start to hold

data locally in the browser, and gradually, they may start to lose track of our

simple goal – maybe implementing filtering in the browser – maybe keeping

data between screen navigations – maybe doing some work that was already

part of the Access Control System. No one is certain, because it is difficult to

see what a software system does without high-effort reviewing of actual

code. How MDriven Turnkey Does It – Every Time To avoid the risk of

muddling the definition of the Access Control System while still offering a rich

user experience, MDriven Turnkey does 4 things: # Lets the ViewModel define

the slice of data we agree with showing an authenticated user with

authorization for a specific use case. The user cannot see more by definition

in the framework. # Lets the ViewModel reduction of data from the complete

model happen on the server and since each ViewModel is fully implemented

with the declarative Object Constraints Language (OCL), you also have an

exact and easily understood definition of the information subset it contains.

Defines the rules that build up the Access Control Systems in the model

declaratively – with static verification – and the ability to make the rules

Page 151

The MDriven Book
depend on any data in your model. # Streams the resulting slice of data – and

any changes to it – to a client to produce a rich client experience without slow

roundtrips and exposes nothing else. MDriven Turnkey comes with the Access

Control System already in place – on the server – you merely need to define

your keys depending on your rules based on your model. Even if you build a

WPF, AngularJS, or Android client – the Access Control System is on the server

adhering to your rules. Since the platform has the Access Control System

in-built, developers can make fewer mistakes. The verification of the rules

can now be done statically in the model and we do not need to review code to

detect the tendencies of muddling the simple goal of ensuring information

filtering is happening on the server only. MDriven Turnkey user

authentication is done with standard OAuth2 allowing for implementations

with optional social login or Single sign-on (SSO) with OpenId. Multifactor

authentication can easily be made part of your Access Control System.

Server-to-server authentication using OAuth2 is also supported as shown

here. All communication is done over SSL and if you have stronger crypto

needs, any tunnel can be used to protect traffic between the user and server.

We claim two important things: * Building software systems with MDriven

Turnkey will make them intrinsically safe – meaning that even the lowest

effort will expose only what you intend to expose. * Using MDriven Turnkey

will make your complete Access Control System possible to inspect even for

non-coders – meaning that security officers can understand what risk level

individual screens pose even in an evolving system. Both these properties are

highly sought after by organizations striving to minimize the risk of unwanted

information leakage – whether it is from coding mistakes, architectural

mistakes, misinterpreted requirements, or simply plain laziness of either

Page 152

The MDriven Book
developers or reviewers. The MDriven Book - Next Chapter: Access control

system in MDriven {{Edited|July|12|2024}}

Page 153

The MDriven Book
Building safer software systems

Write the content here to display this box IT security covers the security of

your Information Technology. A natural subset of IT security is information

security - secure your information, in this context, as part of an IT system. I

often argue that nothing is as easy to sell as fear. Fear of anything. Fear of

lacking IT security and Information Security is no different. It is an easy sell.

You just open with the line, “Are you sure your data is secure – because I

think it might not be?” Deal! Show me! Help me! In my opinion, these are the

obvious IT security hygienic must-haves: * Make sure you authenticate users.

* Have an order to your authorization processes. * Keep your computers clean

from unwanted software. Beyond the obvious IT security must-haves, the

delivered “Show me”, or “Help me” very seldom come to any real practical

effect, other than “You should not have data worth stealing – and if you do,

you should not let anyone come near it – not even your staff”. Well, thank

you, Mr. IT-security expert. Not helpful at all. From my experience in

business, government, and military, the latter two take IT security painfully

seriously. This does not automatically mean that they are safe, but they

spend a lot of effort aiming to be safe. There is a tradeoff between protecting

data and making it easy for trusted users to work with data. You must find a

level in this tradeoff that reduces risk and does not come in the way of work.

There is no such thing as eliminating risk. Trying to eliminate risk will

paralyze you and you will get nothing done. Decide what risk level is

acceptable – and note that this level may contrast with the different types of

data that you have. The risk level may also vary not only on data type and

data value but also on data aggregation; you want to protect all the data

Page 154

The MDriven Book
more than the individual parts. The Basics of IT Security It is pretty simple

really. Think of a PC as a piece of luggage at the airport. “Sir, did you pack

this bag yourself? Have you watched it all the time since you closed it? Can

you guarantee that there is nothing in here you received from others?” When

it comes to your laptop – or the laptop you got from work – you must say

“No!” Your computer is not to be trusted. Period. This does not mean that

there is anything wrong with it, but we cannot be sure. It is easy to sell this

kind of fear. When it comes to the servers for your company that are placed

under lock and key – patched and maintained by educated personnel – we

might say “Well, we sure hope we did not receive anything we did not want.”

So your servers might be safe – and they are easier to trust than user-pcs. IT

departments will try to toughen your PC up. Again, with the luggage

metaphor, they might make it solid, making it impossible to store anything

inside, safer – but you are not helped by a solid piece of luggage or a

computer you cannot store anything in. Anything in between fully functional

and solid is possible, but they can only do so much, and almost anything they

do limits the degree of freedom you have with the computer. The IT

department is most afraid that your computer contains Trojan software that

infects others at work – and increases the threat against the servers. Trojans

can act as beach-heads inside your company from which hackers may have a

line of sight to your servers. Trojans may also be a nuance or even hold your

computer for ransom – but a professional attacking Trojan says nothing; it

just steals your data – for weeks or years. Once infected, it is really hard to

trust a complex IT environment again because there are so many places

where the Trojans may “hide” during cleaning. The cleaning will be extensive

and this motivates great precautions to avoid infection. This text, however,

Page 155

The MDriven Book
will not deal with that kind of IT security. I just had to state the facts, to

make sure we are on the same page. This text is about how we should build

systems in this corrosive and hostile environment to control the risk as we

expose our data to authorized users. Building Safer Software Systems The

thing with building protected software systems is that part of the software

will implement the lock that protects it. I will call “the lock” the

AccessControlSystem. If the Access Control System protects the data from

being exposed to the wrong user – then who protects the

AccessControlSystem from being bypassed? This is the heart of the matter.

Did someone tell you that your system is protected by the Active Directory in

your company? Wrong – the ActiveDirectory may be the one handing out the

keys to the lock – but the system itself is responsible for implementing the

lock. An Access Control System is almost always part of the system itself

(true for all nontrivial access control), just like the lock on your front door is

mounted as a part of the door. So what is the best way to protect the lock?

Let the lock stay on the server! This is the conclusion that most software

architects have reached. Since the lock is a part of the system – the system

must stay on the server as well. This is the main reason for moving away from

rich fat clients on Windows to a typically worse user experience with web

technology like MVC even for in-house systems. Another way to keep the

system on the server is to use terminal server solutions. The important thing

is that the Access Control System filters out the slice of data that is

acceptable to show an individually authenticated user. Filtering out means

that you have a bigger volume to filter from – a volume to reduce to a subset.

The larger volume is what the Access Control System protects. If the Access

Control System is going to protect this volume and filter ok data from it, then

Page 156

The MDriven Book
it must have access to the whole. This is simple logic. Having stated these

facts, we have a clear view of our goal: to deliver approved slices of data to

authenticated users – our users are not physically on the servers – they are on

their laptops. Although the MVC web approach does this, many have found

the reduced user experience is not ideal for prolonged use in an office. Bulky

postbacks and the tendency to reduce the amount of data on a single screen

to avoid lags often make web-based systems click-intensive and filled with

stressful waiting. To mitigate this, many software architects have started to

use Ajax and Javascript to build a richer user experience to replace the plain

data presentation offered by MVC. When doing so, they might start to hold

data locally in the browser, and gradually, they may start to lose track of our

simple goal – maybe implementing filtering in the browser – maybe keeping

data between screen navigations – maybe doing some work that was already

part of the Access Control System. No one is certain, because it is difficult to

see what a software system does without high-effort reviewing of actual

code. How MDriven Turnkey Does It – Every Time To avoid the risk of

muddling the definition of the Access Control System while still offering a rich

user experience, MDriven Turnkey does 4 things: # Lets the ViewModel define

the slice of data we agree with showing an authenticated user with

authorization for a specific use case. The user cannot see more by definition

in the framework. # Lets the ViewModel reduction of data from the complete

model happen on the server and since each ViewModel is fully implemented

with the declarative Object Constraints Language (OCL), you also have an

exact and easily understood definition of the information subset it contains.

Defines the rules that build up the Access Control Systems in the model

declaratively – with static verification – and the ability to make the rules

Page 157

The MDriven Book
depend on any data in your model. # Streams the resulting slice of data – and

any changes to it – to a client to produce a rich client experience without slow

roundtrips and exposes nothing else. MDriven Turnkey comes with the Access

Control System already in place – on the server – you merely need to define

your keys depending on your rules based on your model. Even if you build a

WPF, AngularJS, or Android client – the Access Control System is on the server

adhering to your rules. Since the platform has the Access Control System

in-built, developers can make fewer mistakes. The verification of the rules

can now be done statically in the model and we do not need to review code to

detect the tendencies of muddling the simple goal of ensuring information

filtering is happening on the server only. MDriven Turnkey user

authentication is done with standard OAuth2 allowing for implementations

with optional social login or Single sign-on (SSO) with OpenId. Multifactor

authentication can easily be made part of your Access Control System.

Server-to-server authentication using OAuth2 is also supported as shown

here. All communication is done over SSL and if you have stronger crypto

needs, any tunnel can be used to protect traffic between the user and server.

We claim two important things: * Building software systems with MDriven

Turnkey will make them intrinsically safe – meaning that even the lowest

effort will expose only what you intend to expose. * Using MDriven Turnkey

will make your complete Access Control System possible to inspect even for

non-coders – meaning that security officers can understand what risk level

individual screens pose even in an evolving system. Both these properties are

highly sought after by organizations striving to minimize the risk of unwanted

information leakage – whether it is from coding mistakes, architectural

mistakes, misinterpreted requirements, or simply plain laziness of either

Page 158

The MDriven Book
developers or reviewers. The MDriven Book - Next Chapter: Access control

system in MDriven {{Edited|July|12|2024}}

Page 159

The MDriven Book
How MDriven Turnkey does it - every time

Write the content here to display this box IT security covers the security of

your Information Technology. A natural subset of IT security is information

security - secure your information, in this context, as part of an IT system. I

often argue that nothing is as easy to sell as fear. Fear of anything. Fear of

lacking IT security and Information Security is no different. It is an easy sell.

You just open with the line, “Are you sure your data is secure – because I

think it might not be?” Deal! Show me! Help me! In my opinion, these are the

obvious IT security hygienic must-haves: * Make sure you authenticate users.

* Have an order to your authorization processes. * Keep your computers clean

from unwanted software. Beyond the obvious IT security must-haves, the

delivered “Show me”, or “Help me” very seldom come to any real practical

effect, other than “You should not have data worth stealing – and if you do,

you should not let anyone come near it – not even your staff”. Well, thank

you, Mr. IT-security expert. Not helpful at all. From my experience in

business, government, and military, the latter two take IT security painfully

seriously. This does not automatically mean that they are safe, but they

spend a lot of effort aiming to be safe. There is a tradeoff between protecting

data and making it easy for trusted users to work with data. You must find a

level in this tradeoff that reduces risk and does not come in the way of work.

There is no such thing as eliminating risk. Trying to eliminate risk will

paralyze you and you will get nothing done. Decide what risk level is

acceptable – and note that this level may contrast with the different types of

data that you have. The risk level may also vary not only on data type and

data value but also on data aggregation; you want to protect all the data

Page 160

The MDriven Book
more than the individual parts. The Basics of IT Security It is pretty simple

really. Think of a PC as a piece of luggage at the airport. “Sir, did you pack

this bag yourself? Have you watched it all the time since you closed it? Can

you guarantee that there is nothing in here you received from others?” When

it comes to your laptop – or the laptop you got from work – you must say

“No!” Your computer is not to be trusted. Period. This does not mean that

there is anything wrong with it, but we cannot be sure. It is easy to sell this

kind of fear. When it comes to the servers for your company that are placed

under lock and key – patched and maintained by educated personnel – we

might say “Well, we sure hope we did not receive anything we did not want.”

So your servers might be safe – and they are easier to trust than user-pcs. IT

departments will try to toughen your PC up. Again, with the luggage

metaphor, they might make it solid, making it impossible to store anything

inside, safer – but you are not helped by a solid piece of luggage or a

computer you cannot store anything in. Anything in between fully functional

and solid is possible, but they can only do so much, and almost anything they

do limits the degree of freedom you have with the computer. The IT

department is most afraid that your computer contains Trojan software that

infects others at work – and increases the threat against the servers. Trojans

can act as beach-heads inside your company from which hackers may have a

line of sight to your servers. Trojans may also be a nuance or even hold your

computer for ransom – but a professional attacking Trojan says nothing; it

just steals your data – for weeks or years. Once infected, it is really hard to

trust a complex IT environment again because there are so many places

where the Trojans may “hide” during cleaning. The cleaning will be extensive

and this motivates great precautions to avoid infection. This text, however,

Page 161

The MDriven Book
will not deal with that kind of IT security. I just had to state the facts, to

make sure we are on the same page. This text is about how we should build

systems in this corrosive and hostile environment to control the risk as we

expose our data to authorized users. Building Safer Software Systems The

thing with building protected software systems is that part of the software

will implement the lock that protects it. I will call “the lock” the

AccessControlSystem. If the Access Control System protects the data from

being exposed to the wrong user – then who protects the

AccessControlSystem from being bypassed? This is the heart of the matter.

Did someone tell you that your system is protected by the Active Directory in

your company? Wrong – the ActiveDirectory may be the one handing out the

keys to the lock – but the system itself is responsible for implementing the

lock. An Access Control System is almost always part of the system itself

(true for all nontrivial access control), just like the lock on your front door is

mounted as a part of the door. So what is the best way to protect the lock?

Let the lock stay on the server! This is the conclusion that most software

architects have reached. Since the lock is a part of the system – the system

must stay on the server as well. This is the main reason for moving away from

rich fat clients on Windows to a typically worse user experience with web

technology like MVC even for in-house systems. Another way to keep the

system on the server is to use terminal server solutions. The important thing

is that the Access Control System filters out the slice of data that is

acceptable to show an individually authenticated user. Filtering out means

that you have a bigger volume to filter from – a volume to reduce to a subset.

The larger volume is what the Access Control System protects. If the Access

Control System is going to protect this volume and filter ok data from it, then

Page 162

The MDriven Book
it must have access to the whole. This is simple logic. Having stated these

facts, we have a clear view of our goal: to deliver approved slices of data to

authenticated users – our users are not physically on the servers – they are on

their laptops. Although the MVC web approach does this, many have found

the reduced user experience is not ideal for prolonged use in an office. Bulky

postbacks and the tendency to reduce the amount of data on a single screen

to avoid lags often make web-based systems click-intensive and filled with

stressful waiting. To mitigate this, many software architects have started to

use Ajax and Javascript to build a richer user experience to replace the plain

data presentation offered by MVC. When doing so, they might start to hold

data locally in the browser, and gradually, they may start to lose track of our

simple goal – maybe implementing filtering in the browser – maybe keeping

data between screen navigations – maybe doing some work that was already

part of the Access Control System. No one is certain, because it is difficult to

see what a software system does without high-effort reviewing of actual

code. How MDriven Turnkey Does It – Every Time To avoid the risk of

muddling the definition of the Access Control System while still offering a rich

user experience, MDriven Turnkey does 4 things: # Lets the ViewModel define

the slice of data we agree with showing an authenticated user with

authorization for a specific use case. The user cannot see more by definition

in the framework. # Lets the ViewModel reduction of data from the complete

model happen on the server and since each ViewModel is fully implemented

with the declarative Object Constraints Language (OCL), you also have an

exact and easily understood definition of the information subset it contains.

Defines the rules that build up the Access Control Systems in the model

declaratively – with static verification – and the ability to make the rules

Page 163

The MDriven Book
depend on any data in your model. # Streams the resulting slice of data – and

any changes to it – to a client to produce a rich client experience without slow

roundtrips and exposes nothing else. MDriven Turnkey comes with the Access

Control System already in place – on the server – you merely need to define

your keys depending on your rules based on your model. Even if you build a

WPF, AngularJS, or Android client – the Access Control System is on the server

adhering to your rules. Since the platform has the Access Control System

in-built, developers can make fewer mistakes. The verification of the rules

can now be done statically in the model and we do not need to review code to

detect the tendencies of muddling the simple goal of ensuring information

filtering is happening on the server only. MDriven Turnkey user

authentication is done with standard OAuth2 allowing for implementations

with optional social login or Single sign-on (SSO) with OpenId. Multifactor

authentication can easily be made part of your Access Control System.

Server-to-server authentication using OAuth2 is also supported as shown

here. All communication is done over SSL and if you have stronger crypto

needs, any tunnel can be used to protect traffic between the user and server.

We claim two important things: * Building software systems with MDriven

Turnkey will make them intrinsically safe – meaning that even the lowest

effort will expose only what you intend to expose. * Using MDriven Turnkey

will make your complete Access Control System possible to inspect even for

non-coders – meaning that security officers can understand what risk level

individual screens pose even in an evolving system. Both these properties are

highly sought after by organizations striving to minimize the risk of unwanted

information leakage – whether it is from coding mistakes, architectural

mistakes, misinterpreted requirements, or simply plain laziness of either

Page 164

The MDriven Book
developers or reviewers. The MDriven Book - Next Chapter: Access control

system in MDriven {{Edited|July|12|2024}}

Page 165

The MDriven Book
How the access control system is constructed in MDriven

Write the content here to display this box First, we must agree that the

reasons for restricting access can be manifold. This may be as simple as

avoiding confusing a user with too many options at the wrong time in the

process – or it may be as crucial as protecting highly sensitive information

from getting into the wrong hands. Any practical Access control is probably

based on static information as “users belonging to group Fishermen should

not have access to view Treasury”, but also dynamic information as “if a

Fisherman has been granted payment but has not collected it yet, he should

be able to open the view Treasury”. Another aspect is that we sometimes

want to show that actions are available – but not enabled to you at this

particular moment. At other times, we do not even want to show you that a

given action exists in the system. These are all common requirements when

dealing with access control. Since MDriven solves all user interaction through

ViewModels and Actions, it is natural that these are our targets for Access

Control. We can set any expression in the Enable expression of an action –

this is one way to disable actions. If we have a rule that is the same for many

actions, we may consolidate the rule to an AccessGroup: {{image:Access

control system in MDriven 01.png|frameless|365x365px}}

{{image:Accessgroups.png|frameless|429x429px}} AccessGroups are useful

for static rules like checking if the logged-in user is part of the fisherman

group:

SysSingleton.oclSingleton.CurrentUser.SysRoles->exists(name=’fisherman’)

For actions, we can set the Enable expression for more precision:

{{image:Access control system in MDriven.png|frameless|426x426px}} We

Page 166

The MDriven Book
may also want to give the User a hint as to why the action is disabled. This

ability has reduced the support requests a lot in all the projects we have

done: {{image:Access control system in MDriven

03.png|frameless|413x413px}} For views, refine the access control per

placed widget by setting the ReadOnly expression or/and the Visible

expression: {{image:Access system in MDriven

04.png|frameless|467x467px}} But in views, you can also work on the whole

view: {{image:Access system in MDriven 05.png|frameless|460x460px}}

Setting the Readonly expression on this level affects all the widgets in the

view. Setting the access expression will control if the view is shown at all. If

the view’s Access expression evaluates to false, the system will look for a

ViewModel named AccessDenied and if found, will show this instead. If no

AccessDenied view is found, then a blank screen will show. To allow you to

disable an action that would bring up a view with an access expression

evaluating to false given a certain root object, check the result of the Access

expression before bringing up the view. Do this with the OCL operator

canAccess(vmname):bool. This enables you to disable actions that will end up

showing AccessDenied and stop reports from being created based on a

ViewModel and root object that is not allowed based on the Access expression

of the ViewModel. Working with the described levels of expression, you can

tailor a perfect-fit access control system that evaluates in the safe realm of

your server. All OCL rules use a few OCL operators but mostly names from

your model that are probably in a ubiquitous language shared with the

security officers of your domain. The transparency and fine-grained control of

this access control system is precisely what many organizations need to

protect their information and still allow for fast-paced development. NOTE:

Page 167

The MDriven Book
This is the last chapter of The MDriven Book. See also:

AccessGroups,_InterestGroups_and_ViewModel-Enable, Access_groups

Page 168

The MDriven Book

Table of Contents
What is MDriven 1

Introduction 2

Praise to UML 4

What if UML was forbidden? 9

Luckily UML is NOT forbidden 11

What is not to like? 13

What is next 16

Information design 18

The Information 19

Short introduction to UML- class diagram 20

Association classes 21

Inheritance 23

Polymorphism 25

Composite and Aggregate and what they imply 27

Derived attributes & associations 29

UML - State machines 32

Constraints 33

The ViewModel 35

The declarative ViewModel 36

Taking it further still 37

What an Action can do 39

ExecuteExpression 40

EnableExpression 43

BringUpViewModel & ViewModelRootObjectExpression 46

Page 169

The MDriven Book
ViewModelIsModal & ExpressionAfterModalOk 49

Framework Action 52

Defining Main Menu Actions 55

Action names 56

Constraints descriptions 57

Microsoft Office and OpenDocument as a Report generator 58

A bit hasty and vague 59

Qualifications 66

Images in Word reports 73

Prototyping 80

This is how you do Prototyping with MDriven 81

The look 86

Available Actions 91

Introducing MDriven Server 94

Security concerns for MDriven Server 95

MDrivenServer Summarized 96

MDrivenServer periodic server-side actions 97

Other uses of Server side Actions 100

Emailing from the server 101

Importing data from other SQL sources 102

Producing export files from MDriven Server 105

Shaping and transforming export files 107

SQLExport serverside action 109

Object Constraint Language 110

What is Object Constraint Language 111

Certain important constructs 112

Page 170

The MDriven Book
EAL differences 115

OCLps differences 116

Summary OCL 117

Seeker view 120

Databases use SQL 125

Efficient fetch - real case (advanced - skip until you have the need) 130

Introducing MDriven Turnkey 131

Creating your own MDriven Turnkey instance in your Azure account 132

Set up MDriven Turnkey on premise 133

MDriven Turnkey Architecture 137

Responsibilities 138

Data roundtrip 139

Security 140

Information Security 141

The basics of IT security 147

Building safer software systems 153

How MDriven Turnkey does it - every time 159

How the access control system is constructed in MDriven 165

Page 171

